Convergence in critical fuel moisture and fire weather thresholds associated with fire activity in the pyroregions of Mediterranean Europe

Author(s):  
Víctor Resco de Dios ◽  
Àngel Cunill Camprubí ◽  
Núria Pérez-Zanón ◽  
Juan Carlos Peña ◽  
Edurne Martínez del Castillo ◽  
...  
PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2649 ◽  
Author(s):  
G. Matt Davies ◽  
Colin J. Legg

Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.


2014 ◽  
Vol 23 (7) ◽  
pp. 945 ◽  
Author(s):  
Carlos C. DaCamara ◽  
Teresa J. Calado ◽  
Sofia L. Ermida ◽  
Isabel F. Trigo ◽  
Malik Amraoui ◽  
...  

Here we present a procedure that allows the operational generation of daily maps of fire danger over Mediterranean Europe. These are based on integrated use of vegetation cover maps, weather data and fire activity as detected by remote sensing from space. The study covers the period of July–August 2007 to 2009. It is demonstrated that statistical models based on two-parameter generalised Pareto (GP) distributions adequately fit the observed samples of fire duration and that these models are significantly improved when the Fire Weather Index (FWI), which rates fire danger, is integrated as a covariate of scale parameters of GP distributions. Probabilities of fire duration exceeding specified thresholds are then used to calibrate FWI leading to the definition of five classes of fire danger. Fire duration is estimated on the basis of 15-min data provided by Meteosat Second Generation (MSG) satellites and corresponds to the total number of hours in which fire activity is detected in a single MSG pixel during one day. Considering all observed fire events with duration above 1h, the relative number of events steeply increases with classes of increasing fire danger and no fire activity was recorded in the class of low danger. Defined classes of fire danger provide useful information for wildfire management and are based on the Fire Risk Mapping product that is being disseminated on a daily basis by the EUMETSAT Satellite Application Facility on Land Surface Analysis.


2013 ◽  
Vol 294 ◽  
pp. 62-75 ◽  
Author(s):  
Malik Amraoui ◽  
Margarida L.R. Liberato ◽  
Teresa J. Calado ◽  
Carlos C. DaCamara ◽  
Luís Pinto Coelho ◽  
...  

2004 ◽  
Vol 13 (4) ◽  
pp. 391 ◽  
Author(s):  
B. D. Amiro ◽  
K. A. Logan ◽  
B. M. Wotton ◽  
M. D. Flannigan ◽  
J. B. Todd ◽  
...  

Canadian Fire Weather Index (FWI) System components and head fire intensities were calculated for fires greater than 2 km2 in size for the boreal and taiga ecozones of Canada from 1959 to 1999. The highest noon-hour values were analysed that occurred during the first 21 days of each of 9333 fires. Depending on ecozone, the means of the FWI System parameters ranged from: fine fuel moisture code (FFMC), 90 to 92 (82 to 96 for individual fires); duff moisture code (DMC), 38 to 78 (10 to 140 for individual fires); drought code (DC), 210 to 372 (50 to 600 for individual fires); and fire weather index, 20 to 33 (5 to 60 for individual fires). Fine fuel moisture code decreased, DMC had a mid-season peak, and DC increased through the fire season. Mean head fire intensities ranged from 10 to 28 MW m−1 in the boreal spruce fuel type, showing that most large fires exhibit crown fire behaviour. Intensities of individual fires can exceed 60 MW m−1. Most FWI System parameters did not show trends over the 41-year period because of large inter-annual variability. A changing climate is expected to create future weather conditions more conducive to fire throughout much of Canada but clear changes have not yet occurred.


2019 ◽  
Vol 28 (3) ◽  
pp. 254 ◽  
Author(s):  
F. Pimont ◽  
J. Ruffault ◽  
N.K. Martin-StPaul ◽  
J.-L. Dupuy

Identifying the links between fire danger metrics and fire activity is critical in various operational and research fields. A common methodology consists in analysing the relationship between cumulative burnt areas and fire danger metrics. Building on this approach, it has been proposed that fuel moisture content (FMC) drives fire activity in some ecosystems through between one and three breakpoints corresponding to the onset or saturation of fire activity. We demonstrate, through two different approaches, that this methodology is incorrect, because it is biased by the frequency distribution of FMC values. From comparison with a neutral fire distribution and correction for the frequency bias, we show that cumulative burnt area breakpoints are spurious: an upper breakpoint might exist (but would be higher than expected), while no evidence of reduced fire danger was detected for the lowest values of FMC (on the contrary, a secondary increase was detected). Our findings clearly suggest that previous breakpoints resulting from this methodology should be considered with caution, as erroneous conclusions regarding fire danger breakpoints could have major consequences for both fire safety and science outcomes. Finally, we discuss widespread confusion between fire danger breakpoints and fire danger levels, which explains most previous erroneous conclusions.


1989 ◽  
Vol 4 (2) ◽  
pp. 46-48
Author(s):  
Romain Mees ◽  
Larry Bednar

Abstract We examined the correlation between fire activity and weather records for a 15-year period and a number of National Forests located in Oregon and California. Correlations between burned area and personnel usage, and fire weather indices of the National Fire Danger Rating System were weak. But time periods for which the fire weather indices showed extreme values also have a considerably larger proportion of extreme fire activity. In this sense, the indices can serve as predictors of extreme fire acitvity. This holds true in areas of widely divergent climates and differing fuel types. The joint influence of time-clustering of fires and extreme fire conditions, as reflected by the burning index, is also quantified. West. J. Appl. For. 4(2):46-48, April 1989.


2014 ◽  
Vol 23 (2) ◽  
pp. 202 ◽  
Author(s):  
John D. Horel ◽  
Robert Ziel ◽  
Chris Galli ◽  
Judith Pechmann ◽  
Xia Dong

A web-based set of tools has been developed to integrate weather, fire danger and fire behaviour information for the Great Lakes region of the United States. Weather parameters obtained from selected observational networks are combined with operational high-resolution gridded analyses and forecast products from the United States National Weather Service. Fuel moisture codes and fire behaviour indices in the Fire Weather Index subsystem of the Canadian Forest Fire Danger Rating System are computed from these sources for current and forecast conditions. Applications of this Great Lakes Fire and Fuels System are demonstrated for the 2012 fire season. Fuel moisture codes and fire behaviour indices computed from gridded analyses differ from those derived from observations in a manner similar to the analysis errors typical for the underlying weather parameters. Indices that are particularly sensitive to seasonally accumulating precipitation, such as the Drought Code, exhibit the largest differences. The gridded analyses and forecasts provide considerable additional information for fire weather professionals to evaluate weather and fuel state in the region. The potential utility of these gridded analyses and forecasts throughout the continental United States is highlighted.


2018 ◽  
Vol 9 ◽  
pp. 101-110 ◽  
Author(s):  
Joaquín Bedia ◽  
Nicola Golding ◽  
Ana Casanueva ◽  
Maialen Iturbide ◽  
Carlo Buontempo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document