New framework for managing the water environmental capacity integrating the watershed model and stochastic algorithm

Author(s):  
Kaihang Zhu ◽  
Lei Chen ◽  
Shibo Chen ◽  
Cheng Sun ◽  
Wenzhuo Wang ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 346
Author(s):  
Dedi Liu ◽  
Yujie Zeng ◽  
Yue Qin ◽  
Youjiang Shen ◽  
Jiayu Zhang

Due to water supply increase and water quality deterioration, water resources are a critical problem in saltwater intrusion areas. In order to balance the relationship between water supply and water environment requirements, the nexus of water supply-water environment capacity should be well understood. Based on the Saint–Venant system of equations and the convection diffusion equation, the water supply-water environment capacity nexus physical equation is determined. Equivalent reliability is employed to estimate the boundary design water flow, which will then lead to a dynamic nexus. The framework for determining the nexus was then applied to a case study for the Pearl River Delta in China. The results indicate that the water supply-water environment capacity nexus is a declining linear relationship, which is different from the non-salt intrusion and tide-impacted areas. Water supply mainly relies on freshwater flow from upstream, while water environmental capacity is affected by both the design freshwater flow and the water levels at the downstream boundary. Our methods provide a useful framework for the quantification of the physical nexus according to the water quantity and water quality mechanisms, which are useful for freshwater allocation and management in a saltwater intrusion area or the tail area of cascade reservoirs.


Author(s):  
Huang ◽  
Zhang ◽  
Tong

The water quality target management of the control unit is a convenient and direct technology for water environment management and the development direction of water environment management in China, involving control unit division and water environment capacity calculation. Taking the Taihu Lake Basin in Jiangsu Province as an example, we propose herein the basic principle of the division of a regional control unit in a plain river network and the method of analyzing the rationality of the control unit division. On this basis, the Taihu Lake Basin in Jiangsu Province was divided into 70 control units. To calculate the water environmental capacity in the plain river network area, we established a water environmental capacity calculation framework based on multiple targets of lakes and rivers, and proposed the goal of water quality "double compliance" of the water environmental functional zone and the assessment section. For this study, we calculated the regional water environmental capacity using the mathematical model of the Taihu Lake Basin’s water environmental capacity, and the water environmental capacities of the 70 control units were allocated by the weight coefficient method, which established water area and functional division length. The research results described herein were applied to the pollution permit management of the Taihu Lake Basin in Jiangsu Province. It provides important technical support for the establishment of a pollution permit system based on the total capacity to improve environmental quality.


2012 ◽  
Vol 518-523 ◽  
pp. 4043-4046
Author(s):  
Fu Chun Zhou ◽  
Yu Yan Fan ◽  
Guo Dong Liu ◽  
Long Hui Zhang

Reservoir outflow is an important factor not only impacting reservoir flow field, but also affecting reservoir water environmental capacity. This paper, taking a reservoir as an example, makes use of computational fluid dynamics and water quality calculation software calculating the reservoir outflow quality in different discharge width, and calculating the corresponding environmental capacity of the reservoir under different discharge width of the reservoir and the flow concentration. The relationship of the outflow width, outflow discharge and water environmental capacity is analyzed.


2006 ◽  
Vol 18 (5) ◽  
pp. 503-508 ◽  
Author(s):  
WANG Xia ◽  
◽  
LU Xianguo ◽  
YAN Bairu ◽  
YU Li ◽  
...  

Author(s):  
Li Wu ◽  
Zhe Chen ◽  
Xuan Ding ◽  
Hui-ying Liu ◽  
Dun-qiu Wang

Abstract In this paper, a coupling model of SWAT (Soil and Water Assessment Tool) and EFDC (Environmental Fluid Dynamics Code) was established, and the relationship between the pollution source and water quality response was identified. Based on the hydrodynamic water quality simulation results and the one-dimensional WEC (water environmental capacity) theoretical formula, the total nitrogen and total phosphorus WEC and the remaining WEC of the Yongzhou Section of Xiangjiang River Basin under the guaranteed rate of 90% and in 2017 were calculated, respectively. It can be seen from the results that the total nitrogen WEC of the Yongzhou Section of Xiangjiang River Basin in 2017 is 27,673.04 t, the total nitrogen WEC under the guaranteed rate of 90% is 19,497.61 t/a and the total phosphorus WEC of the Yongzhou Section of Xiangjiang River Basin in 2017 is 4,877.22 t. The total phosphorus WEC under the guaranteed rate of 90% is 2,936.64 t/a; in 2017, the remaining WECs of total nitrogen and total phosphorus in the entire basin are 14,646.69 and 3,358.67 t, respectively.


Sign in / Sign up

Export Citation Format

Share Document