What Makes a Successful Sponge City Project? Expert perceptions of critical factors in integrated urban water management in the Asia-pacific

2021 ◽  
pp. 103317
Author(s):  
S. Hawken ◽  
S. Sepasgozar ◽  
V. Prodanovic ◽  
J. Jing ◽  
A. Bakelmun ◽  
...  
2019 ◽  
Vol 11 (19) ◽  
pp. 5527 ◽  
Author(s):  
Fan ◽  
Matsumoto

Climate change along with industrialization or urbanization, which uses materials with low water permeability and is accompanied by change in urban land use, are major reasons for frequent urban floods in many Chinese cities. Moreover, upgrading the drainage system can have numerous negative environmental impacts on the city, especially in districts with dense population and buildings. A new integrated urban water management (IUWM) strategy implemented in China, “sponge city,” has gained significant attention in recent years. In this study, a novel framework is built to analyze the effectiveness of sponge city by 3D simulating urban inundation results and performing a cost–benefit analysis. Construction and maintenance fees are included in the costs list, and carbon reduction, air quality improvement, rainwater harvesting, and reduction of flood risk are included under benefits. The district of Nangang in Harbin city in Northeast China was chosen as a case study area. Finally, we conclude that the maximum precipitation of 49.82 mm/h by sponge city can bring the inundation depth below a target depth in the target area. Further, though the sponge city project is not effective from a private perspective, it is effective from a social perspective.


2020 ◽  
Vol 34 (13) ◽  
pp. 4253-4269 ◽  
Author(s):  
José Matheus Bezerra dos Santos Amorim ◽  
Saulo de Tarso Marques Bezerra ◽  
Maísa Mendonça Silva ◽  
Lyanne Cibely Oliveira de Sousa

2006 ◽  
Vol 6 (2) ◽  
pp. 1-7 ◽  
Author(s):  
J. Hunt ◽  
M. Anda ◽  
K. Mathew ◽  
G. Ho

Integrated Urban Water Management (IUWM) in land developments is becoming increasingly necessary in order to more efficiently utilise and manage water resources. Techniques including the control of stormwater runoff, increasing infiltration and providing opportunities for retention, treatment and reuse of both stormwater and wastewater, are well suited to being designed into the development rather than considered post-construction or not at all. There can be extensive capital investment by developers to implement IUWM which is often not returned in the land sales. This produces a disincentive for the developer unless the contribution is recognised and rewarded either financially or with appropriate marketing advantage. A system to rate land developments based upon IUWM has been developed that would quantifiably assess how effectively water resources would be utilised in a proposed land development. This assessment would provide a point of comparison between developments allowing property purchasers, developers, utilities and legislators to quickly compare how well the development performs in terms of IUWM, providing a mechanism for financial reward or recognition. This paper discusses the development of a model to quantifiably assess land developments for water efficient use and introduces a rating system with which land developments can be compared in terms of IUWM.


Sign in / Sign up

Export Citation Format

Share Document