A time-of-use pricing strategy for managing electric vehicle clusters

2021 ◽  
Vol 25 ◽  
pp. 100411
Author(s):  
Jose Vuelvas ◽  
Fredy Ruiz ◽  
Giambattista Gruosso
2020 ◽  
Vol 10 (9) ◽  
pp. 3247 ◽  
Author(s):  
Qian Zhang ◽  
Yue Hu ◽  
Weiyu Tan ◽  
Chunyan Li ◽  
Zhuwei Ding

In order to solve the problem that the static peak-valley price for electric vehicles cannot truly reflect the relationship between electricity supply and demand, as well as the fact that the low utilization rate of renewable energy in the micro-grid, a dynamic time-of-use pricing strategy for electric vehicle charging considering user satisfaction degree is proposed, to achieve the goal of friendly charging for the micro-grid. Firstly, this paper researches the travel patterns of electric vehicles to establish the grid connection scenes and predict the controllable capacity of electric vehicles. Secondly, the charging preferences of different types of users are studied, and a comprehensive satisfaction degree model is set up to obtain different users’ charging strategies. Furthermore, the paper raises a pricing strategy on account of the dispatching requirements of the micro-grid, and realizes the effective dispatch of electric vehicle charging load based on price signals. Finally, we gain the dynamic time-of-use charging price, using the strategy proposed above, and the economic benefits brought to the micro-grid and electric vehicle users are analyzed, which validates the rationality and effectiveness of the pricing strategy.


2021 ◽  
Vol 675 (1) ◽  
pp. 012163
Author(s):  
Xuliang Zhao ◽  
Jiguang Xue ◽  
Tong Wu ◽  
Hong Xue ◽  
Sitong Dong ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 27
Author(s):  
Yuana Adianto ◽  
Craig Baguley ◽  
Udaya Madawala ◽  
Nanang Hariyanto ◽  
Suwarno Suwarno ◽  
...  

Charge scheduling can mitigate against issues arising from excessive electric vehicle (EV) charging loads and is commonly implemented using time-of-use pricing. A charge scheduling strategy to suit vertically structured power systems without relying on time-of-use pricing has not yet been reported, despite being needed by industry. Therefore, a novel charge scheduling strategy to meet this need is proposed in this paper. Key aspects include the provision of a decision-making framework that accommodates for the considerations of transmission and distribution network operators, and the allowance for dynamically changing charging loads through timely forecast updates with reduced communication requirements. A case study based on the Indonesian Java-Bali power system is undertaken to demonstrate the strategy’s effectiveness. Different and realistic EV uptake scenarios are considered, using probabilistic modeling, survey work, and a Monte Carlo modeling approach. Even under slow EV charging conditions case study results show assets are overloaded and high electricity production costs are incurred. These are alleviated through adopting the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document