Inclusion of mother liquor inside KDP crystals in a continuous MSMPR crystallizer

2005 ◽  
Vol 43 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Hideo Miki ◽  
Tomonobu Terashima ◽  
Yusuke Asakuma ◽  
Kouji Maeda ◽  
Keisuke Fukui
Keyword(s):  
1986 ◽  
Vol 51 (11) ◽  
pp. 2481-2488
Author(s):  
Benitto Mayrhofer ◽  
Jana Mayrhoferová ◽  
Lubomír Neužil ◽  
Jaroslav Nývlt

The paper presents a simple model of recrystallization with countercurrent flows of the solution and the crystals being purified. The model assumes steady-state operating conditions, an equilibrium between the outlet streams of each stage, and the same equilibrium temperature and distribution coefficient for all stages. With these assumptions, the model provides the basis for analyzing the variation in the degree of purity as a function of the number of recrystallization stages. The analysis is facilitated by the use of a diagram constructed for the limiting case of perfect removal of the mother liquor from the crystals between the stages.


1987 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
ISAAC O. KIBWAGE ◽  
GERARD JANSSEN ◽  
ROGER BUSSON ◽  
Jos HOOGMARTENS ◽  
HUBERT VANDERHAEGHE ◽  
...  
Keyword(s):  

2021 ◽  
pp. 105102
Author(s):  
Arthur Merkel ◽  
Matej Vavro ◽  
Martin Ondrušek ◽  
Daria Voropaeva ◽  
Andrey Yaroslavtsev ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Evgeny V. Nazarchuk ◽  
Dmitri O. Charkin ◽  
Oleg I. Siidra

Three new uranyl sulfates, [pyH](H3O)[(UO2)3(SO4)4(H2O)2] (1), [pyH]2[(UO2)6(SO4)7(H2O)] (2), and [pyH]2[(UO2)2(SO4)3] (3), were produced upon hydrothermal treatment and successive isothermal evaporation. 1 is monoclinic, P21/c, a = 14.3640(13), b = 10.0910(9), c = 18.8690(17) Å, β = 107.795(2), V = 2604.2(4) Å3, R1 = 0.038; 2 is orthorhombic, C2221, a = 10.1992(8), b = 18.5215(14), c = 22.7187(17) Å, V = 4291.7(6) Å3, R1 = 0.030; 3 is orthorhombic, Pccn, a = 9.7998(8), b = 10.0768(8), c = 20.947(2) Å, V = 2068.5(3) Å3, R1 = 0.055. In the structures of 1 and 2, the uranium polyhedra and SO4 tetrahedra share vertices to form ∞3[(UO2)3(SO4)4(H2O)2]2− and ∞3[(UO2)6(SO4)7(H2O)]2− frameworks featuring channels (12.2 × 6.7 Å in 1 and 12.9 × 6.5 Å in 2), which are occupied by pyridinium cations. The structure of 3 is comprised of ∞2[(UO2)2(SO4)3]2− layers linked by hydrogen bonds donated by pyridinium cations. The compounds 1–3 are formed during recrystallization processes, in which the evaporation of mother liquor leads to a stepwise loss of hydration water.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 369
Author(s):  
Jianhui Mao ◽  
Wenjun Liu ◽  
Dongfang Li ◽  
Chenkai Zhang ◽  
Yi Ma

As an excellent multifunctional single crystal, potassium dihydrogen phosphate (KDP) is a well-known, difficult-to-process material for its soft-brittle and deliquescent nature. The surface mechanical properties are critical to the machining process; however, the characteristics of deformation behavior for KDP crystals have not been well studied. In this work, the strain rate effect on hardness was investigated on the mechanically polished tripler plane of a KDP crystal relying on nanoindentation technology. By increasing the strain rate from 0.001 to 0.1 s−1, hardness increased from 1.67 to 2.07 GPa. Hence, the strain rate sensitivity was determined as 0.053, and the activation volume of dislocation nucleation was 169 Å3. Based on the constant load-holding method, creep deformation was studied at various holding depths at room temperature. Under the spherical tip, creep deformation could be greatly enhanced with increasing holding depth, which was mainly due to the enlarged holding strain. Under the self-similar Berkovich indenter, creep strain could be reduced at a deeper location. Such an indentation size effect on creep deformation was firstly reported for KDP crystals. The strain rate sensitivity of the steady-state creep flow was estimated, and the creep mechanism was qualitatively discussed.


Wear ◽  
2021 ◽  
pp. 203692 ◽  
Author(s):  
Shengyao Yang ◽  
Liangchi Zhang ◽  
Zhonghuai Wu

2014 ◽  
Vol 118 (3) ◽  
pp. 831-836 ◽  
Author(s):  
Leilei Huang ◽  
Patrick Salter ◽  
Michał Karpiński ◽  
Brian Smith ◽  
Frank Payne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document