scholarly journals Chemiresistive sensors based on Dodecyl benzene Sulfonic acid doped Polypyrrole and Reduced Graphene Oxide for nitrogen oxides

2021 ◽  
Vol 1204 (1) ◽  
pp. 012004
Author(s):  
Djamil Guettiche ◽  
Ahmed Mekki ◽  
Tighilt Fatma Zohra ◽  
Noureddine Ramdani ◽  
Rachid Mahmoud

Abstract A new series of polypyrrole doped with n-dodecylbenzene sulphonic acid/reduced graphene oxide (PPy-DBSA/rGO) nanocomposite was electrodeposited on Indium tin oxide coated Polyethylene terephthalate (ITO/PET) flexible substrate by electrochemical route using the chronoamperometric technique. As-prepared for testing of chemiresistive properties against the detection of nitrogen dioxide (NO2) vapors at room temperature. The sensitivity and reactivity of the composite toward NO2 was evaluated. The recorded morphological and structural data confirmed that the PPy-DBSA/rGO forms a homogeneous nanocomposite. The optimal NO2 sensing properties have been revealed by the PPy-DBSA/rGO in terms of response (43%), response time (30.25 s), the detection limit (1ppm), and reproducibility. Furthermore, Results showed that the doped by sulfonic acid improved both the sensitivity and the reactivity of our produced nanocomposite toward NO2. Due to the strong interactions between the NO2 gas molecules and the rGO was dramatically enhanced the electronic properties of these nanocomposites. These striking characteristics of the newly developed nanocomposites make them very suitable to be used as NO2 gas sensor.

2019 ◽  
Vol 9 (2) ◽  
pp. 326 ◽  
Author(s):  
Somasekhar Chinnadayyala ◽  
Jinsoo Park ◽  
Yonghyun Choi ◽  
Jae-Hee Han ◽  
Ajay Yagati ◽  
...  

The improved binding ability of graphene–nanoparticle composites to proteins or molecules can be utilized to develop new cell-based assays. In this study, we fabricated reduced graphene oxide–gold nanoparticles (rGO-AuNP) electrodeposited onto a transparent indium tin oxide (ITO) electrode and investigated the feasibility of the electrochemical impedance monitoring of cell growth. The electrodeposition of rGO–AuNP on the ITO was optically and electrochemically characterized in comparison to bare, rGO-, and AuNP-deposited electrodes. The cell growth on the rGO–AuNP/ITO electrode was analyzed via electrochemical impedance measurement together with the microscopic observation of HEK293 cells transfected with a green fluorescent protein expression vector. The results showed that rGO–AuNP was biocompatible and induced an increase in cell adherence to the electrode when compared to the bare, AuNP-, or rGO-deposited ITO electrode. At 54 h cultivation, the average and standard deviation of the saturated normalized impedance magnitude of the rGO–AuNP/ITO electrode was 3.44 ± 0.16, while the value of the bare, AuNP-, and rGO-deposited ITO electrode was 2.48 ± 0.15, 2.61 ± 0.18, and 3.01 ± 0.25, respectively. The higher saturated value of the cell impedance indicates that the impedimetric cell-based assay has a broader measurement range. Thus, the rGO–AuNP/ITO electrode can be utilized for label-free and real-time impedimetric cell-based assays with wider dynamic range.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
M. Z. H. Khan ◽  
M. A. Rahman ◽  
P. Yasmin ◽  
F. K. Tareq ◽  
N. Yuta ◽  
...  

In this study, we present a new approach for the formation and deposition of Cu nanocube-decorated reduced graphene oxide (rGO-CuNCs) nanosheet on indium tin oxide (ITO) electrode using very simple method. Cubic Cu nanocrystals have been successfully fabricated on rGO by a chemical reduction method at low temperature. The morphologies of the synthesized materials were characterized by ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The as-formed CuNCs were found to be homogeneously and uniformly decorated on rGO nanosheets. We demonstrated that the individual rGO sheets can be readily reduced and decorated with CuNCs under a mild condition using L-ascorbic acid (L-AA). Such novel ITO/rGO-CuNCs represent promising platform for future device fabrication and electrocatalytic applications.


Sign in / Sign up

Export Citation Format

Share Document