Influences of tracking and installation errors on the optical performance of a parabolic trough collector with heat pipe evacuated tube

2022 ◽  
Vol 50 ◽  
pp. 101721
Author(s):  
Weiwei Zhang ◽  
Linzuo Duan ◽  
Jiabin Wang ◽  
Xuyang Ba ◽  
Zijing Zhang ◽  
...  
2015 ◽  
Vol 99 ◽  
pp. 141-150 ◽  
Author(s):  
H. Jafari Mosleh ◽  
S. Jahangiri Mamouri ◽  
M.B. Shafii ◽  
A. Hakim Sima

2022 ◽  
Author(s):  
SakthiPriya Manivannan ◽  
DivyaLaxmi Gunasekaran ◽  
Gowthami Jaganathan ◽  
Shanthi Natesan ◽  
SabariMuthu Muthusamy ◽  
...  

Abstract This paper investigates the solar evacuated tube heat pipe system (SEHP) coupled with a thermoelectric generator (TEG) using the internet of things (IoT). The TEGs convert heat energy into electricity through the Seebeck effect that finds application in the waste heat recovery process for the generation of power. The present work deals with the theoretical study on solar evacuated tube heat pipe integrated TEG and it is validated experimentally using with and without parabolic trough concentrating collector. And the carbon credit of the TEG system is determined to find its potential in the environmental aspect. Also, the boost type converter is used to raise the power output by increasing the voltage from the TEG for rural electrifications. However, it is found that the maximum power output due to the influence of the parabolic trough concentrator results in increased efficiency when compared with the non-concentrating SEHP-TEG system. The TEG output power can be boosted up to a maximum of 5.98 V using a power electronic boost converter. Besides, the recorded real sensor data with Arduino is implemented in the experimental process for automatic remote monitoring of the temperature.


2021 ◽  
Vol 10 (1) ◽  
pp. 50-60
Author(s):  
N. K. Sharma ◽  
Ashok Kumar Mishra ◽  
P. Rajgopal

The objective of this study is to develop a low cost solar parabolic trough that can be used for steam sterilization of medical instruments in small clinics where electricity is scarce and expensive. On the basis of theoretical concepts of parabola and focus-balanced parabola, the assembly of ribs and reflector sheet with evacuated tube and heat pipe has been done. The parabolic trough has been mounted on a trolley so that it can be moved easily according to direction of sun light. The designed solar parabolic trough was integrated with pressure cooker under various setups and experiments were conducted to test whether sterilization is taking place or not. To validate sterilization process, tests were also conducted by placing the infected medical instruments. The solar parabolic trough developed was able to generate and maintain steam at 121 degrees Celsius at pressure 15 psig (101.3 kN/m2) for 15 minutes. The solar parabolic trough developed was effective in sterilizing the medical instruments.


Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1907 ◽  
Author(s):  
Majedul Islam ◽  
Sarah Miller ◽  
Prasad Yarlagadda ◽  
Azharul Karim

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Ghulam Qadar Chaudhary ◽  
Rubeena Kousar ◽  
Muzaffar Ali ◽  
Muhammad Amar ◽  
Khuram Pervez Amber ◽  
...  

The current study presents a numerical and real-time performance analysis of a parabolic trough collector (PTC) system designed for solar air-conditioning applications. Initially, a thermodynamic model of PTC is developed using engineering equation solver (EES) having a capacity of around 3 kW. Then, an experimental PTC system setup is established with a concentration ratio of 9.93 using evacuated tube receivers. The experimental study is conducted under the climate of Taxila, Pakistan in accordance with ASHRAE 93-1986 standard. Furthermore, PTC system is integrated with a solid desiccant dehumidifier (SDD) to study the effect of various operating parameters such as direct solar radiation and inlet fluid temperature and its impact on dehumidification share. The experimental maximum temperature gain is around 5.2°C, with the peak efficiency of 62% on a sunny day. Similarly, maximum thermal energy gain on sunny and cloudy days is 3.07 kW and 2.33 kW, respectively. Afterwards, same comprehensive EES model of PTC with some modifications is used for annual transient analysis in TRNSYS for five different climates of Pakistan. Quetta revealed peak solar insolation of 656 W/m2 and peak thermal energy 1139 MJ with 46% efficiency. The comparison shows good agreement between simulated and experimental results with root mean square error of around 9%.


Sign in / Sign up

Export Citation Format

Share Document