Experimental and numerical characterization of honeycomb sandwich composite panels

2009 ◽  
Vol 17 (10) ◽  
pp. 1533-1547 ◽  
Author(s):  
Ahmed Abbadi ◽  
Y. Koutsawa ◽  
A. Carmasol ◽  
S. Belouettar ◽  
Z. Azari
Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1264 ◽  
Author(s):  
Kwang-Hee Im ◽  
Sun-Kyu Kim ◽  
Jong-An Jung ◽  
Young-Tae Cho ◽  
Yong-Deuck Woo ◽  
...  

For many years, scientists have been aware of the importance of terahertz waves (T-rays), which have now emerged as an NDE (nondestructive evaluation) technique for certain ranges of the electronic spectrum. The present study deals with T-ray scanning techniques of honeycomb sandwich composite panels with a carbon-fiber-reinforced plastic (CFRP) skin as well as the refractive index (n), and the electrical conductivity (α) of glass fiber-reinforced plastic (GFRP) composites. For this experiment, the degree of penetration to FRP composites is investigated for the THz transmitted power based on the angle in the electric field (E-field) direction vs. the direction of the unidirectional carbon fibers. Also, when CFRP skin honeycomb sandwich panels are manufactured for use in aerospace applications, aluminum wires are twisted together into the one-sided surface of the honeycomb sandwich panels to protect against thunderstorms. The aluminum wires are partly visible because they are embedded in the CFRP skin on the honeycomb sandwich panels. After finishing work with a paintjob, the wires become invisible. Thus, detecting the aluminum wires is a key issue for product monitoring. Based on a simple resistor model, an optimal scanning method is proposed to determine the preferred scan orientation on the baseline of the E-field in the direction of fibers to evaluate the level of transmission of T-rays according to the frequency bandwidth. Thus, the combination of angles required to detect the aluminum wires embedded with carbon fibers on the surface of the composite panels can be determined.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1360
Author(s):  
Kwang-Hee Im ◽  
Sun-Kyu Kim ◽  
Jong-An Jung ◽  
Young-Tae Cho ◽  
Yong-Deuck Woo ◽  
...  

Terahertz wave (T-ray) technologies have become a popular topic in scientific research over the last two decades, and can be utilized in nondestructive evaluation (NDE) techniques. This study suggests an optimal scanning technique method for honeycomb sandwich composite panels, where skins were utilized with two different skins, namely, carbon fiber-reinforced plastic (CFRP) skin and glass fiber-reinforced plastic (GFRP) skin, as layers of the panel surfaces. Foreign objects were artificially inserted between the skins and honeycomb cells in the honeycomb sandwich composite panels. For this experiment, optimal T-ray scanning methods were performed to examine defects based on the angle between the one-ply thin fiber skin axis and the angle of the electric field (E-field) according to the amount of conductivity of the honeycomb sandwich composite panels. In order to confirm the fundamental characteristics of the terahertz waves, the refractive index values of the GFRP composites were experimentally obtained and analyzed, with the data agreeing with known solutions. Terahertz waves (T-rays) were shown to have limited penetration in honeycomb sandwich composite panels when utilized with a skin of carbon fibers. Therefore, T-rays were found to interact with the electrical conductivity and electric field direction of honeycomb sandwich composite panels with glass fiber skins. The T-ray images were obtained regardless of the electric field direction and the fiber direction. In the honeycomb sandwich composite panels with carbon fiber skins, the T-ray images with higher signal-to-noise (S/N) ratios depended on the scanning angle between the angle of the carbon fiber and the angle of the electric field. Thus, the angle of optimum detection measurement was confirmed to be 90° between the E-field and the fiber direction, particularly when using a carbon fiber skin.


2002 ◽  
Author(s):  
Bert L. Smith ◽  
John S. Tomblin ◽  
K. S. Raju ◽  
K. H. Liew ◽  
A. K. M. Haque ◽  
...  

2006 ◽  
Vol 306-308 ◽  
pp. 763-768
Author(s):  
Hyoung Gu Kim ◽  
Hoong Soo Yoon ◽  
Nak Sam Choi

Theoretical formulas for effective elastic modulus and Poisson's ratio of honeycomb core materials were proposed considering the bending, axial and shear deformations of cell walls. Theoretical results obtained by the formulas showed orthotropic elasticity and large Poisson’s ratio, which were comparable to results by finite element analysis(FEA). Tensile test of honeycomb sandwich composite(HSC) plates was performed for analysis of their deformation behaviors and interlaminar stresses. Equivalent plate model using the theoretical results of honeycomb core layer show that interlaminar shear stress occurring due to large difference of Poisson’s ratio between skin and honeycomb core layers led to the delamination in HSC plate under tensile loading. Load-displacement behavior of HSC specimen simulated by equivalent plate model coincided fairly with that of detailed FEA model similar to experimental results.


Sign in / Sign up

Export Citation Format

Share Document