Real-time agent-based crowd simulation with the Reversible Jump Unscented Kalman Filter

Author(s):  
Robert Clay ◽  
Jonathan A. Ward ◽  
Patricia Ternes ◽  
Le-Minh Kieu ◽  
Nick Malleson
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 750
Author(s):  
Wenkang Wan ◽  
Jingan Feng ◽  
Bao Song ◽  
Xinxin Li

Accurate and real-time acquisition of vehicle state parameters is key to improving the performance of vehicle control systems. To improve the accuracy of state parameter estimation for distributed drive electric vehicles, an unscented Kalman filter (UKF) algorithm combined with the Huber method is proposed. In this paper, we introduce the nonlinear modified Dugoff tire model, build a nonlinear three-degrees-of-freedom time-varying parametric vehicle dynamics model, and extend the vehicle mass, the height of the center of gravity, and the yaw moment of inertia, which are significantly influenced by the driving state, into the vehicle state vector. The vehicle state parameter observer was designed using an unscented Kalman filter framework. The Huber cost function was introduced to correct the measured noise and state covariance in real-time to improve the robustness of the observer. The simulation verification of a double-lane change and straight-line driving conditions at constant speed was carried out using the Simulink/Carsim platform. The results show that observation using the Huber-based robust unscented Kalman filter (HRUKF) more realistically reflects the vehicle state in real-time, effectively suppresses the influence of abnormal error and noise, and obtains high observation accuracy.


2014 ◽  
Vol 615 ◽  
pp. 244-247
Author(s):  
Dong Wang ◽  
Guo Yu Lin ◽  
Wei Gong Zhang

The wheel force transducer (WFT) is used to measure dynamic wheel loads. Unlike other force sensors, WFT is rotating with the wheel. For this reason, the outputs and the inputs of the transducer are nonlinearly related, and traditional Kalman Filter is not suitable. In this paper, a new real-time filter algorithm utilizing Quadrature Kalman Filter (QKF) is proposed to solve this problem. In Quadrature Kalman Filter, Singer model is introduced to track the wheel force, and the observation function is established for WFT. The simulation results illustrate that the new filter outperforms the traditional Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF).


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ho-Nien Shou

This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF) method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF). As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.


2016 ◽  
Vol 16 (06) ◽  
pp. 1550016 ◽  
Author(s):  
Mohsen Askari ◽  
Jianchun Li ◽  
Bijan Samali

System identification refers to the process of building or improving mathematical models of dynamical systems from the observed experimental input–output data. In the area of civil engineering, the estimation of the integrity of a structure under dynamic loadings and during service condition has become a challenge for the engineering community. Therefore, there has been a great deal of attention paid to online and real-time structural identification, especially when input–output measurement data are contaminated by high-level noise. Among real-time identification methods, one of the most successful and widely used algorithms for estimation of system states and parameters is the Kalman filter and its various nonlinear extensions such as extended Kalman filter (EKF), Iterated EKF (IEKF), the recently developed unscented Kalman filter (UKF) and Iterated UKF (IUKF). In this paper, an investigation has been carried out on the aforementioned techniques for their effectiveness and efficiencies through a highly nonlinear single degree of freedom (SDOF) structure as well as a two-storey linear structure. Although IEKF is an improved version of EKF, results show that IUKF generally produces better results in terms of structural parameters and state estimation than UKF and IEKF. Also IUKF is more robust to noise levels compared to the other approaches.


2012 ◽  
Vol 442 ◽  
pp. 251-255
Author(s):  
Zheng Ying

To estimate the pose of large aircraft component in pose adjustment quickly and accurately, a real-time estimation method based on Unscented Kalman filter (UKF) is proposed. Firstly, in the process of the aircraft component adjustment, a rough value of aircraft component’s pose is acquired by using forward kinematic model and the displacement of positioners on real time. Then, position of a measuring point fixed on aircraft component is obtained by a laser tracker. At last, UKF is employed to integrate the previous rough value and the measuring point position for evaluating the accurate pose of aircraft component. Numerical simulation results show that the presented method is achieved easily, calculated fast and high accurate.


Author(s):  
Wael Farag ◽  

In this paper, a real-time road-Object Detection and Tracking (LR_ODT) method for autonomous driving is proposed. The method is based on the fusion of lidar and radar measurement data, where they are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is employed for their data fusion. The merits of both devices are combined using the proposed fusion approach to precisely provide both pose and velocity information for objects moving in roads around the ego car. Unlike other detection and tracking approaches, the balanced treatment of both pose estimation accuracy and its real-time performance is the main contribution in this work. The proposed technique is implemented using the high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time performance. Simulation studies have been carried out to evaluate the performance of the LR_ODT for tracking bicycles, cars, and pedestrians. Moreover, the performance of the UKF fusion is compared to that of the Extended Kalman Filter fusion (EKF) showing its superiority. The UKF has outperformed the EKF on all test cases and all the state variable levels (-24% average RMSE). The employed fusion technique show how outstanding is the improvement in tracking performance compared to the use of a single device (-29% RMES with lidar and -38% RMSE with radar).


Sign in / Sign up

Export Citation Format

Share Document