Non-invasive prenatal testing for Down syndrome

2014 ◽  
Vol 19 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Philip Twiss ◽  
Melissa Hill ◽  
Rebecca Daley ◽  
Lyn S. Chitty
2019 ◽  
Vol 2 (2) ◽  
pp. 21-22
Author(s):  
Meghan Chevalier

With the advent of Non-Invasive Prenatal Testing, Chris Kaposy believes that more people should choose to parent children with Down Syndrome. Kaposy advocates for the Social Disability Model and recommends a normative pragmatic approach as standard. He makes use of both quantitative and qualitative evidence to support his position.


2015 ◽  
Vol 18 (5) ◽  
pp. 260-271 ◽  
Author(s):  
Elke Mersy ◽  
Christine E.M. de Die-Smulders ◽  
Audrey B.C. Coumans ◽  
Luc J.M. Smits ◽  
Guido M.W.R. de Wert ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 402-407
Author(s):  
Zeynep Guldem Okem ◽  
Gokcen Orgul ◽  
Berna Tari Kasnakoglu ◽  
Mehmet Cakar ◽  
Mehmet Sinan Beksac

2013 ◽  
Vol 42 (s1) ◽  
pp. 130-131
Author(s):  
C. Poon ◽  
W. Ng ◽  
K. Kou ◽  
B. Lau ◽  
T. Ma ◽  
...  

Midwifery ◽  
2019 ◽  
Vol 76 ◽  
pp. 118-124
Author(s):  
Chelsea Valentin ◽  
Andy Smidt ◽  
Rebecca Barton ◽  
Nathan J Wilson ◽  
Bethea How

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Juozas Gordevičius ◽  
Milda Narmontė ◽  
Povilas Gibas ◽  
Kotryna Kvederavičiūtė ◽  
Vita Tomkutė ◽  
...  

Abstract Background Massively parallel sequencing of maternal cell-free DNA (cfDNA) is widely used to test fetal genetic abnormalities in non-invasive prenatal testing (NIPT). However, sequencing-based approaches are still of high cost. Building upon previous knowledge that placenta, the main source of fetal circulating DNA, is hypomethylated in comparison to maternal tissue counterparts of cfDNA, we propose that targeting either unmodified or 5-hydroxymethylated CG sites specifically enriches fetal genetic material and reduces numbers of required analytical sequencing reads thereby decreasing cost of a test. Methods We employed uTOPseq and hmTOP-seq approaches which combine covalent derivatization of unmodified or hydroxymethylated CG sites, respectively, with next generation sequencing, or quantitative real-time PCR. Results We detected increased 5-hydroxymethylcytosine (5hmC) levels in fetal chorionic villi (CV) tissue samples as compared with peripheral blood. Using our previously developed uTOP-seq and hmTOP-seq approaches we obtained whole-genome uCG and 5hmCG maps of 10 CV tissue and 38 cfDNA samples in total. Our results indicated that, in contrast to conventional whole genome sequencing, such epigenomic analysis highly specifically enriches fetal DNA fragments from maternal cfDNA. While both our approaches yielded 100% accuracy in detecting Down syndrome in fetuses, hmTOP-seq maintained such accuracy at ultra-low sequencing depths using only one million reads. We identified 2164 and 1589 placenta-specific differentially modified and 5-hydroxymethylated regions, respectively, in chromosome 21, as well as 3490 and 2002 Down syndrome-specific differentially modified and 5-hydroxymethylated regions, respectively, that can be used as biomarkers for identification of Down syndrome or other epigenetic diseases of a fetus. Conclusions uTOP-seq and hmTOP-seq approaches provide a cost-efficient and sensitive epigenetic analysis of fetal abnormalities in maternal cfDNA. The results demonstrated that T21 fetuses contain a perturbed epigenome and also indicated that fetal cfDNA might originate from fetal tissues other than placental chorionic villi. Robust covalent derivatization followed by targeted analysis of fetal DNA by sequencing or qPCR presents an attractive strategy that could help achieve superior sensitivity and specificity in prenatal diagnostics.


Sign in / Sign up

Export Citation Format

Share Document