scholarly journals De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties

2014 ◽  
Vol 21 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Ponnuswamy Vijayaraghavan ◽  
Sophia Lazarus ◽  
Samuel Gnana Prakash Vincent
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ponnuswamy Vijayaraghavan ◽  
Sreekumar Saranya ◽  
Samuel Gnana Prakash Vincent

Cow dung and agroresidues were used as the substrates for the production of alkaline proteases by Pseudomonas putida strain AT in solid-state fermentation. Among the various substrates evaluated, cow dung supported maximum (1351±217 U/g) protease production. The optimum conditions for the production of alkaline proteases were a fermentation period of 48 h, 120% (v/w) moisture, pH 9, and the addition of 6% (v/w) inoculum, 1.5% (w/w) trehalose, and 2.0% (w/w) yeast extract to the cow dung substrate. The enzyme was active over a range of temperatures (50–70°C) and pHs (8–10), with maximum activity at 60°C and pH 9. These enzymes showed stability towards surfactants, detergents, and solvent and digested various natural proteins.


3 Biotech ◽  
2016 ◽  
Vol 6 (2) ◽  
Author(s):  
Gurupatham Devadhasan Biji ◽  
Arumugaperumal Arun ◽  
Eswaran Muthulakshmi ◽  
Ponnuswamy Vijayaraghavan ◽  
Mariadhas Valan Arasu ◽  
...  

2008 ◽  
Vol 83 (7) ◽  
pp. 1012-1018 ◽  
Author(s):  
Jarun Chutmanop ◽  
Sinsupha Chuichulcherm ◽  
Yusuf Chisti ◽  
Penjit Srinophakun

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ponnuswamy Vijayaraghavan ◽  
P. Rajendran ◽  
Samuel Gnana Prakash Vincent ◽  
Arumugaperumal Arun ◽  
Naif Abdullah Al-Dhabi ◽  
...  

Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings,Bacillussp. IND12 was selected for fibrinolytic enzyme production.Bacillussp. IND12 effectively used cow dung for its growth and enzyme production (687±6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4were the vital parameters with statistical significance (p<0.001). Three factors (moisture, sucrose, and MgSO4) were further studied through experiments of central composite rotational design and response surface methodology. Enzyme production of optimized medium showed4143±12.31 U/g material, which was more than fourfold the initial enzyme production (978±36.4 U/g). The analysis of variance showed that the developed response surface model was highly significant (p<0.001). The fibrinolytic enzyme digested goat blood clot (100%), chicken skin (83±3.6%), egg white (100%), and bovine serum albumin (29±4.9%).


2016 ◽  
Vol 182 (2) ◽  
pp. 511-528 ◽  
Author(s):  
R. Renganath Rao ◽  
M. Vimudha ◽  
N. R. Kamini ◽  
M. K. Gowthaman ◽  
B. Chandrasekran ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
pp. 13-23
Author(s):  
Nabiha Naeem Sheikhs ◽  
Qurat-ul-ain ◽  
Saba Altaf

Proteases (also known as peptidases or proteinases) are hydrolytic enzymes that cleave proteins into amino acids. They comprise 60% of the total industrial usage of enzymes worldwide and can be obtained from many sources. The current study aims to isolate and screen protease-producing bacterial strains from the soil and to produce protease from the bacterial co-cultures using solid-state fermentation (SSF). Primary screening of the protease-producing bacterial strains was carried out on skim milk agar and they were sub-cultured and preserved on the nutrient agar for further testing. Thirty-two compatibility tests of twenty-seven bacterial isolates were performed and SSF was carried out. Afterward, absorbance was taken at 660 nm against tyrosine as standard. According to the results, the bacterial co-culture 19 showed the highest absorbance with an enzyme activity of 10.2 U/ml. The bacterial strains of the co-culture 19 were identified through morphological and biochemical tests. Bacterial strain 1 was observed as cocci and irregular, while bacterial strain 2 was bacillus and rod-shaped. Both strains were positive for gram staining, catalase test, casein hydrolysis test and methyl red test. As for endospore staining, bacterial strain 1 was spore forming while bacterial strain 2 was a non-spore former. It was concluded that the bacterial co-culture 19 can act as a potent co-culture for protease production. Compatibility test was carried out to enhance the production of protease by utilizing cheap and readily available agro-waste products, which benefit the industry by being cost effective and the environment by being eco-friendly.


2021 ◽  
Vol 93 (suppl 3) ◽  
Author(s):  
FELYPE T.B. ROCHA ◽  
ROMERO M.P. BRANDÃO-COSTA ◽  
ANNA GABRIELLY D. NEVES ◽  
KETHYLEN B.B. CARDOSO ◽  
THIAGO P. NASCIMENTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document