scholarly journals Pomegranate peel extracts effects to reduce mono sodium glutamate toxic effects on chicken embryos: Morphological studies

Author(s):  
Fawzyah Abdullah Mohammed Al-Ghamdi
1995 ◽  
Vol 78 ◽  
pp. 82
Author(s):  
T. Varga ◽  
I. Hlubik ◽  
L. Várnagy ◽  
P. Budai

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fawzyah A. Al-Ghamdi

Abstract Background This experimental study aimed to determine the changes caused by monosodium glutamate (MSG) on morphology and histology of liver of chicken embryos aged 16 days of incubation. In this research, 50 fertilized eggs were used. They were divided into two equal groups, one group was used as control with normal liver structure, while the other group (MSG) was treated with MSG in 0 day of incubation (0.1ml/egg). Results The results showed many harmful effects on hepatic cells, blood sinusoids, and bile ducts in MSG group. These changes included alterations in nuclei conformation and nuclear envelope. Chromatin distribution was associated with increased electronic intensity. Also, there were rupture in smooth endoplasm systems and malfunction of mitochondria and Golgi apparatus, with increased lysosomes and lipid droplets. Conclusions This study concluded that MSG had severe toxic effects on liver structure if it was given in pre-conception period as this period is considered critical for liver growth (organogenesis).


AGROFOR ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Rita SZABÓ ◽  
Géza SZEMERÉDY ◽  
Éva KORMOS ◽  
József LEHEL ◽  
Péter BUDAI

The aim of the study was to determine the individual and combined toxic effects ofthe herbicide Fozát 480 (glyphosate [isopropylamine salt] 480g/l) and cadmiumsulphate (CdSO4) on the development of chicken embryos. On the first day ofincubation, chicken eggs were injected with 0.1 ml of cadmium sulphate solution(0.1%) and/or with 0.1 ml of Fozát 480 (2.0%). The chicken embryos wereexamined on the 19th day by measuring the rate of embryo mortality and bodyweight and by identification of different types of developmental anomalies andmacroscopic malformations. The body weight data were statistically evaluated byone-way ANOVA and Dunnett tests, while the embryonic mortality and thedevelopmental anomalies were analysed by Fisher test. Our teratogenicity studyrevealed, that the combined administration of cadmium sulphate and glyphosate(isopropylamine salt) containing herbicide formulation caused a significantreduction in the body weight of embryos and increased the rate of embryonicmortality. The joint toxic effect of cadmium sulphate and Fozát 480 is an additiveeffect compared to the individual toxicity of the test materials.


Morphologia ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 7-21
Author(s):  
Ye.V. Paltov ◽  
Kh.P. Ivasivca ◽  
M.V. Pankiv

The aim of our scientific work was to study the existing experimental models of glutamate effects on the body and to understand the mechanisms of this effect and its possible consequences. To achieve this goal, we have studied different sources of scientific medical literature. Results. In a healthy body, glutamic acid is secreted by brain neurons in the required amount as a neurotransmitter and participates in the main information flows of human body. Sodium glutamate, which enters the body with food in large quantities, affects the body, causing general toxic effects and has a local effect on the stomach, intestines, salivary glands and pancreas and so on. Based on the scientific literature, experimental models that study the effects of glutamate are divided into two types: models in which glutamate enters the body orally and when glutamate is administered subcutaneously and intraperitoneally in the neonatal period of life. In the first route of administration, glutamate causes a toxic effect, which is manifested in increased catalytic activity in the blood serum of alanine aminotransferase, aspartate aminotransferase and gamma-glutamyltranspeptidase in 2.5; 1.6; and 1.5 times, respectively, while the activity of alkaline phosphatase remained at control levels, indicating a pronounced hepatotoxic effect of monosodium glutamate as a dietary supplement. It causes an increase in content of total and tyrosine-containing peptides in the blood serum, increase of substances of low and medium molecular weight, as well as an increase in the values of intoxication, which indirectly indicates a violation of the detoxification of endogenous metabolites in the liver of experimental animals. Ingestion of sodium glutamate within the recommended doses has not been shown to cause marked pathological changes in the mucous, muscular and serous membranes of the gastric wall, but there is a slight fullness of the vessels of the submucosal membrane. It has been found that in high doses, sodium glutamate has a local pathogenic effect on the tissues of the stomach, which consists in thinning all layers of its wall, desquamation of the mucous membrane and its disorganization by reducing the size of gastric glands, increasing the number of vessels and their fullness with blood. One of the mechanisms of pathogenic effect of sodium glutamate is the contact local and free radical oxidizing effect on gastric tissues. In the oral route of administration of glutamate there are no phenomena of fat growth (obesity) as epidermal, which is characteristic of the abdominal form of obesity, so and pararectal, parallelic, pararenal and retroperitoneal, which is characteristic for the visceral form of obesity. In the subcutaneous and intraperitoneal routes of administration of glutamate in the neonatal period of life in experimental animals, glutamate causes hypersecretion of hydrochloric acid, the development of lesions manifested by hemorrhage, erosions and ulcers in the gastric mucosa and obesity. Prolonged administration of monosodium glutamate significantly enhances the striking effects of stress on the gastric mucosa. Morphological studies of the submandibular salivary glands of rats on the background of glutamate-induced obesity confirm the development of pathological changes, as evidenced by the detected vacuolar dystrophy in the acinar region, perivascular and periductal edema. On the background of abdominal obesity, dystrophic processes were found in the acinuses and minor dystrophic changes in the intraparticle inserts. Conclusion. In the subcutaneous and intraperitoneal routes of administration of glutamate in the neonatal period of life in experimental animals, glutamate causes hypersecretion of hydrochloric acid, the development of lesions manifested by hemorrhage, erosions and ulcers in the gastric mucosa and obesity. Prolonged administration of monosodium glutamate significantly enhances the striking effects of stress on the gastric mucosa. Morphological studies of the submandibular salivary glands of rats on the background of glutamate-induced obesity confirm the development of pathological changes, as evidenced by the detected vacuolar dystrophy in the acinar region, perivascular and periductal edema. On the background of abdominal obesity, dystrophic processes were found in the acinuses and minor dystrophic changes in the intraparticle inserts. There is no doubt in the fact, which is based on the results of numerous experimental studies and covered in professional scientific litefrature, that the abdominal form of glutamate-induced obesity is possible only with subcutaneous and intraperitoneal routes of its administration in the neonatal period of life and while intraorall way of administration does not occur.


Author(s):  
R. J. Barrnett ◽  
J. A. Higgins

The main products of intestinal hydrolysis of dietary triglycerides are free fatty acids and monoglycerides. These form micelles from which the lipids are absorbed across the mucosal cell brush border. Biochemical studies have indicated that intestinal mucosal cells possess a triglyceride synthesising system, which uses monoglyceride directly as an acylacceptor as well as the system found in other tissues in which alphaglycerophosphate is the acylacceptor. The former pathway is used preferentially for the resynthesis of triglyceride from absorbed lipid, while the latter is used mainly for phospholipid synthesis. Both lipids are incorporated into chylomicrons. Morphological studies have shown that during fat absorption there is an initial appearance of fat droplets within the cisternae of the smooth endoplasmic reticulum and that these subsequently accumulate in the golgi elements from which they are released at the lateral borders of the cell as chylomicrons.We have recently developed several methods for the fine structural localization of acyltransferases dependent on the precipitation, in an electron dense form, of CoA released during the transfer of the acyl group to an acceptor, and have now applied these methods to a study of the fine structural localization of the enzymes involved in chylomicron lipid biosynthesis. These methods are based on the reduction of ferricyanide ions by the free SH group of CoA.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Author(s):  
J. Sepulveda-Saavedra ◽  
I. Vander-Klei ◽  
M. Venhuis ◽  
Y. Piñeyro-Lopez

Karwinskia humboldtiana is a poisonous plant that grows in semi desertic areas in north and central México. It produces several substances with different toxic effects. One of them designated T-514 damages severely the lung, kidney and liver, producing in the hepatoeyte large intracellular fat deposits and necrosis. Preliminary observations demonstrated that three is a decrease in the amount of peroxisomes in the hepatocytes of experimentally intoxicated rats and monkeys. To study the effect exerted by the T-514 on peroxisomes, a yeast model was selected, thus, three species: Saccha romices cerevisiae, Ilansenula polymorpha and Candida boidinii were used, because there is information concerning their peroxisome's morphology, enzyme content, biological behaviour under different culture conditions and biogenesis.


Author(s):  
M. W. Brightman

The cytological evidence for pinocytosis is the focal infolding of the cell membrane to form surface pits that eventually pinch off and move into the cytoplasm. This activity, which can be inhibited by oxidative and glycolytic poisons, is performed only by cell processes that are at least 300A wide. However, the interpretation of such toxic effects becomes equivocal if the membrane invaginations do not normally lead to the formation of migratory vesicles, as in some endothelia and in smooth muscle. The present study is an attempt to set forth some conditions under which pinocytosis, as distinct from the mere inclusion of material in surface invaginations, can take place.


Sign in / Sign up

Export Citation Format

Share Document