Displacement sensing of a micro-electro-thermal actuator using a monolithically integrated thermal sensor

2009 ◽  
Vol 150 (1) ◽  
pp. 137-143 ◽  
Author(s):  
Jacky Chow ◽  
Yongjun Lai
2019 ◽  
Vol 139 (8) ◽  
pp. 258-264
Author(s):  
Hayato Tsuchiya ◽  
Yusuke Suganuma ◽  
Masanori Muroyama ◽  
Takahiro Nakayama ◽  
Yutaka Nonomura

1997 ◽  
Vol 503 ◽  
Author(s):  
Yongxia Zhang ◽  
Yanwei Zhang ◽  
Juliana Blaser ◽  
T. S. Sriiram ◽  
R. B. Marcus

ABSTRACTA thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an Atomic Force Microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. The thermal response over the range 25–s 4.5–rovolts per degree C and is linear.


2008 ◽  
Vol 42 (6-8) ◽  
pp. 953-964
Author(s):  
Stefan Löhle ◽  
Jean-Luc Battaglia ◽  
Jean-Christophe Batsale

2020 ◽  
Vol 15 ◽  
Author(s):  
Fahad Layth Malallah ◽  
Baraa T. Shareef ◽  
Mustafah Ghanem Saeed ◽  
Khaled N. Yasen

Aims: Normally, the temperature increase of individuals leads to the possibility of getting a type of disease, which might be risky to other people such as coronavirus. Traditional techniques for tracking core-temperature require body contact either by oral, rectum, axillary, or tympanic, which are unfortunately considered intrusive in nature as well as causes of contagion. Therefore, sensing human core-temperature non-intrusively and remotely is the objective of this research. Background: Nowadays, increasing level of medical sectors is a necessary targets for the research operations, especially with the development of the integrated circuit, sensors and cameras that made the normal life easier. Methods: The solution is by proposing an embedded system consisting of the Arduino microcontroller, which is trained with a model of Mean Absolute Error (MAE) analysis for predicting Contactless Core-Temperature (CCT), which is the real body temperature. Results: The Arduino is connected to an Infrared-Thermal sensor named MLX90614 as input signal, and connected to the LCD to display the CCT. To evaluate the proposed system, experiments are conducted by participating 31-subject sensing contactless temperature from the three face sub-regions: forehead, nose, and cheek. Conclusion: Experimental results approved that CCT can be measured remotely depending on the human face, in which the forehead region is better to be dependent, rather than nose and cheek regions for CCT measurement due to the smallest


1989 ◽  
Vol 25 (15) ◽  
pp. 954 ◽  
Author(s):  
T. Matsui ◽  
H. Sugimoto ◽  
K. Ohtsuka ◽  
Y. Abe ◽  
H. Ogata

Sign in / Sign up

Export Citation Format

Share Document