Characterization of Ti/W, Ti/Cr, and Ti/Pt thin flims-Part II: Nano-scratching and tribological properties

2017 ◽  
Vol 254 ◽  
pp. 20-27 ◽  
Author(s):  
Yongdae Kim ◽  
Hyun Young Choi
Author(s):  
C. Ballesteros ◽  
J. A. Garci´a ◽  
M. I. Orti´z ◽  
R. Rodri´guez ◽  
M. Varela

A detailed tribological characterization of low-energy, nitrogen implanted V5 at. %Ti alloy is presented. Samples were nitrogen-implanted at an accelerating voltage of 1.2 kV and 1 mA/cm2, up to a dose of 1E19 ions/cm2. The tribological properties of the alloys: microhardness, friction coefficient and wear resistance, have improved after ion implantation and this improvement increases as the implantation temperature increases. The microstructure of the alloys were analysed by transmission electron microscopy. A direct correlation between structural modifications of the nitrogen implanted layer and the improvement in their tribological properties is obtained. For samples implanted at 848 K a nanocomposite layer where the reinforcement particles are TiN precipitates forms. TiN precipitation appears as the responsible of the improvement in the tribological properties.


2010 ◽  
Vol 25 (5) ◽  
pp. 880-889 ◽  
Author(s):  
Zhi-Hui Xu ◽  
Young-Bae Park ◽  
Xiaodong Li

Ion implantation has been widely used to improve the mechanical and tribological properties of single crystalline silicon, an essential material for the semiconductor industry. In this study, the effects of four different ion implantations, Ar, C, N, and Ne ions, on the mechanical and tribological properties of single crystal Si were investigated at both the nanoscale and the microscale. Nanoindentation and microindentation were used to measure the mechanical properties and fracture toughness of ion-implanted Si. Nano and micro scratch and wear tests were performed to study the tribological behaviors of different ion-implanted Si. The relationship between the mechanical properties and tribological behavior and the damage mechanism of scratch and wear were also discussed.


Author(s):  
Salim Barbhuiya ◽  
Ikbal Choudhury

Thermal spray is a generic term used to define a group of coating processes used to apply both metallic and non-metallic coatings. These coatings are usually defined by their hardness, strength, porosity, roughness, and wear resistance. In this chapter, the authors turn their attention to the mechanical and tribological properties of thermal spray coatings. The individual phase plays a very important role in determining the performance of the coating. However, evaluating the mechanical and tribological properties at a nano-level requires new test methods and their validation. In this chapter, elaborate discussion of some techniques to evaluate and analyze the mechanical and tribological properties of different thermal spray coatings is done. This chapter is intended to help the reader to firstly understand the basic principle and methods of characterization of thermal spray coatings using instrumented nanoindentation, nanoscratch, abrasive wear testing techniques, and secondly to get an idea of the recent techniques and review the research and development in the same field.


Sign in / Sign up

Export Citation Format

Share Document