Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode

2013 ◽  
Vol 186 ◽  
pp. 380-387 ◽  
Author(s):  
Feng Gao ◽  
Xili Cai ◽  
Xia Wang ◽  
Cai Gao ◽  
Shaoli Liu ◽  
...  
2015 ◽  
Vol 3 (37) ◽  
pp. 7440-7448 ◽  
Author(s):  
Beibei Yang ◽  
Jin Wang ◽  
Duan Bin ◽  
Mingshan Zhu ◽  
Ping Yang ◽  
...  

A highly sensitive and selective electrochemical sensor: a 3D hierarchical ternary composite including a Pt nanodendrite/reduced graphene oxide/MnO2 nanoflower modified electrode.


2020 ◽  
Vol 9 (1) ◽  
pp. 760-767 ◽  
Author(s):  
Seyed Morteza Naghib ◽  
Farahnaz Behzad ◽  
Mehdi Rahmanian ◽  
Yasser Zare ◽  
Kyong Yop Rhee

AbstractFunctionalized graphene-based nanocomposites have opened new windows to address some challenges for increasing the sensitivity, accuracy and functionality of biosensors. Polyaniline (PANI) is one of the most potentially promising and technologically important conducting polymers, which brings together the electrical features of metals with intriguing properties of plastics including facile processing and controllable chemical and physical properties. PANI/graphene nanocomposites have attracted intense interest in various fields due to unique physicochemical properties including high conductivity, facile preparation and intriguing redox behavior. In this article, a functionalized graphene-grafted nanostructured PANI nanocomposite was applied for determining the ascorbic acid (AA) level. A significant current response was observed after treating the electrode surface with methacrylated graphene oxide (MeGO)/PANI nanocomposite. The amperometric responses showed a robust linear range of 8–5,000 µM and detection limit of 2 µM (N = 5). Excellent sensor selectivity was demonstrated in the presence of electroactive components interfering species, commonly found in real serum samples. This sensor is a promising candidate for rapid and selective determination of AA.


2018 ◽  
Vol 10 (23) ◽  
pp. 2731-2739 ◽  
Author(s):  
Amir Kaffash ◽  
Hamid R. Zare ◽  
Khosrow Rostami

An electrochemically reduced graphene oxide and horseradish peroxidase enzyme modified electrode has been used for phenol determination.


2021 ◽  
Vol 83 (3) ◽  
pp. 85-92
Author(s):  
Azleen Rashidah Mohd Rosli ◽  
Farhanini Yusoff ◽  
Saw Hong Loh ◽  
Hanis Mohd Yusoff ◽  
Muhammad Mahadi Abdul Jamil ◽  
...  

A magnetic nanoparticles/reduced graphene oxide modified glassy carbon electrode (MNP/rGO/GCE) was fabricated via one-step facile synthesis route for the simultaneous determination of ascorbic acid (AA), dopamine (DA), along with uric acid (UA). A series of diseases and disorders has been associated with irregular levels of these respective analytes, thus early detection is highly crucial. Physical and electrochemical characterization of the modified electrode was conducted by using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) analysis, X-Ray Diffraction (XRD) analysis and Brauneur-Emmet-Teller (BET), Cyclic Voltammetry (CV) and Electron Impedance Spectroscopy (EIS). The results obtained confirmed the formation of MNP/rGO composite. Differential pulse voltammetry (DPV) of MNP/rGO/GCE displays three well-defined peaks which associated to AA, DA and UA, respectively. The response towards DA is linear in the concentration range of 15 nM to 100 µM with a detection limit of 0.19 nM while a response to AA and UA is also linear in the concentration range of 10 µM to 100 µM with a limit of detection 0.22 µM and 45 nM respectively. The proposed modified electrode offers a good response towards simultaneous detection of three different electroactive species with excellent electron transfer rate, great capacitance and ideal diffusive control behavior.


Sign in / Sign up

Export Citation Format

Share Document