Correlation of carbon monoxide sensing and catalytic activity of pure and cation doped lanthanum iron oxide nano-crystals

2015 ◽  
Vol 206 ◽  
pp. 389-398 ◽  
Author(s):  
K.K. Bhargav ◽  
S. Ram ◽  
Nitin Labhsetwar ◽  
S.B. Majumder
1980 ◽  
Vol 45 (3) ◽  
pp. 783-790 ◽  
Author(s):  
Petr Taras ◽  
Milan Pospíšil

Catalytic activity of nickel-molybdenum catalysts for methanation of carbon monoxide and hydrogen was studied by means of differential scanning calorimetry. The activity of NiMoOx systems exceeds that of carrier-free nickel if x < 2, and is conditioned by the oxidation degree of molybdenum, changing in dependence on the composition in the region Mo-MoO2. The activity of the catalysts is adversely affected by irradiation by fast neutrons, dose 28.1 Gy, or by γ rays using doses in the region 0.8-52 kGy. The system is most susceptible to irradiation in the region of low concentrations of the minor component (about 1 mol.%). The dependence of changes in catalytic activity of γ-irradiated samples on the dose exhibits a maximum in the range of 2-5 kGy. The changes in catalytic activity are stimulated by the change of reactivity of the starting mixed oxides, leading to different kinetics of their reduction and modification of their adsorption properties. The irradiation of the catalysts results in lowered concentration of the active centres for the methanation reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131 ◽  
Author(s):  
Rola Mohammad Al Soubaihi ◽  
Khaled Mohammad Saoud ◽  
Myo Tay Zar Myint ◽  
Mats A. Göthelid ◽  
Joydeep Dutta

Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.


1986 ◽  
Vol 51 (8) ◽  
pp. 1571-1578 ◽  
Author(s):  
Alois Motl

The radiation catalytic properties of the BASF K-3-10 catalyst were studied, namely the dependence of these effects on the time interval between the catalyst irradiation and the reaction itself and also on the length of the catalyst use. The catalytic effects decrease exponentially with the interval between the irradiation and the reaction if the catalyst is kept in the presence of air. The stability of effects induced by various types of radiations increases in the sequence beta radiation - gamma radiation - fast neutrons. The radiation catalytic effect stability in the reaction increases in the same sequence.


1995 ◽  
Vol 24 (8) ◽  
pp. 699-700 ◽  
Author(s):  
Tsutomu Suzuki ◽  
Yuzo Imizu ◽  
Yoshinobu Satoh ◽  
Sunao Ozaki

2018 ◽  
Vol 344 ◽  
pp. 545-555 ◽  
Author(s):  
Mike Carltonbird ◽  
Srisin Eaimsumang ◽  
Sangobtip Pongstabodee ◽  
Supakorn Boonyuen ◽  
Siwaporn Meejoo Smith ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 66-67
Author(s):  
J.W. Hangas ◽  
G.W. Graham ◽  
R.W. McCabe ◽  
W. Chun

Automotive exhaust catalysts are typically operated under stoichiometric conditions to minimize nitrogen oxide, hydrocarbon, and carbon monoxide pollutants. These catalysts do not form carbon filaments under normal operating conditions. In development of catalysts, however, a stabilization procedure is sometimes utilized on used catalysts (dynamometer or vehicle) to purge the catalyst of sulfur prior to measuring the catalytic activity in sweep and light-off testing. The stabilization procedure consists of running the catalyst under rich (excess fuel) conditions for 0.5hr. This study documents the existence of carbon filaments due to the stabilization procedure and discusses the effect of filaments on subsequent testing.Two separate catalysts were used in this study. The first was a 50,000 mile vehicle aged catalyst that had also been through the stabilization procedure and then sweep and light-off tested. The other was only dynamometer aged for 120hr at 850°C (1560°F).


Sign in / Sign up

Export Citation Format

Share Document