Carbon Filament Growth on Fully Formulated Pd/Rh Automotive Catalysts

2000 ◽  
Vol 6 (S2) ◽  
pp. 66-67
Author(s):  
J.W. Hangas ◽  
G.W. Graham ◽  
R.W. McCabe ◽  
W. Chun

Automotive exhaust catalysts are typically operated under stoichiometric conditions to minimize nitrogen oxide, hydrocarbon, and carbon monoxide pollutants. These catalysts do not form carbon filaments under normal operating conditions. In development of catalysts, however, a stabilization procedure is sometimes utilized on used catalysts (dynamometer or vehicle) to purge the catalyst of sulfur prior to measuring the catalytic activity in sweep and light-off testing. The stabilization procedure consists of running the catalyst under rich (excess fuel) conditions for 0.5hr. This study documents the existence of carbon filaments due to the stabilization procedure and discusses the effect of filaments on subsequent testing.Two separate catalysts were used in this study. The first was a 50,000 mile vehicle aged catalyst that had also been through the stabilization procedure and then sweep and light-off tested. The other was only dynamometer aged for 120hr at 850°C (1560°F).

Author(s):  
Jan Gorski ◽  
Wajid Ali Chishty ◽  
Matthew Johnson

The motivation for the work comes from the requirement to assess the feasibility of using alternative fuels in lean-premixed land-based stationary gas turbine combustion systems. Lean-premixed systems are prone to combustion instability issues and the need is to determine how the use of alternative fuels would affect such instabilities. The paper presents the results of an acoustically-forced laminar flat flame study that was conducted to measure the influence of flow velocity oscillations on the response of syngas flames under various operating conditions and in comparison to natural gas flames. The results indicate that syngas concentration in a methane-syngas-air mixture significantly affects the flame response. On the other hand, the ratio of hydrogen-to-carbon monoxide in the syngas was found to have a negligible effect on the flame response for a fuel blend made up of 50% methane and 50% syngas. Flame liftoff distance and flame speed were found to be important parameters that govern the flame transfer function magnitude and resonant frequency for a thermally stabilized flat flame. The paper also presents insights into flame transfer function scaling based on a refined Strouhal definition.


2003 ◽  
Author(s):  
G. Earnest ◽  
A. Echt ◽  
J. McCammon ◽  
K. Dunn ◽  
R. McCleery ◽  
...  

1980 ◽  
Vol 45 (3) ◽  
pp. 783-790 ◽  
Author(s):  
Petr Taras ◽  
Milan Pospíšil

Catalytic activity of nickel-molybdenum catalysts for methanation of carbon monoxide and hydrogen was studied by means of differential scanning calorimetry. The activity of NiMoOx systems exceeds that of carrier-free nickel if x < 2, and is conditioned by the oxidation degree of molybdenum, changing in dependence on the composition in the region Mo-MoO2. The activity of the catalysts is adversely affected by irradiation by fast neutrons, dose 28.1 Gy, or by γ rays using doses in the region 0.8-52 kGy. The system is most susceptible to irradiation in the region of low concentrations of the minor component (about 1 mol.%). The dependence of changes in catalytic activity of γ-irradiated samples on the dose exhibits a maximum in the range of 2-5 kGy. The changes in catalytic activity are stimulated by the change of reactivity of the starting mixed oxides, leading to different kinetics of their reduction and modification of their adsorption properties. The irradiation of the catalysts results in lowered concentration of the active centres for the methanation reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131 ◽  
Author(s):  
Rola Mohammad Al Soubaihi ◽  
Khaled Mohammad Saoud ◽  
Myo Tay Zar Myint ◽  
Mats A. Göthelid ◽  
Joydeep Dutta

Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 135
Author(s):  
Zhibin Wen ◽  
Qianqian Zhu ◽  
Jiali Zhou ◽  
Shudi Zhao ◽  
Jinnan Wang ◽  
...  

Novel flower-shaped C-dots/Co3O4{111} with dual-reaction centers were constructed to improve the Fenton-like reaction activity and peroxymonosulfate (PMS) conversion to sulfate radicals. Due to the exposure of a high surface area and Co3O4{111} facets, flower-shaped C-dots/Co3O4{111} could provide more Co(II) for PMS activation than traditional spherical Co3O4{110}. Meanwhile, PMS was preferred for adsorption on Co3O4{111} facets because of a high adsorption energy and thereby facilitated the electron transfer from Co(II) to PMS. More importantly, the Co–O–C linkage between C-dots and Co3O4{111} induced the formation of the dual-reaction center, which promoted the production of reactive organic radicals (R•). PMS could be directly reduced to SO4−• by R• over C-dots. On the other hand, electron transferred from R• to Co via Co–O–C linkage could accelerate the redox of Co(II)/(III), avoiding the invalid decomposition of PMS. Thus, C-dots doped on Co3O4{111} improved the PMS conversion rate to SO4−• over the single active site, resulting in high turnover numbers (TONs). In addition, TPR analysis indicated that the optimal content of C-dots doped on Co3O4{111} is 2.5%. More than 99% of antibiotics and dyes were degraded over C-dots/Co3O4{111} within 10 min. Even after six cycles, C-dots/Co3O4{111} still remained a high catalytic activity.


1986 ◽  
Vol 51 (8) ◽  
pp. 1571-1578 ◽  
Author(s):  
Alois Motl

The radiation catalytic properties of the BASF K-3-10 catalyst were studied, namely the dependence of these effects on the time interval between the catalyst irradiation and the reaction itself and also on the length of the catalyst use. The catalytic effects decrease exponentially with the interval between the irradiation and the reaction if the catalyst is kept in the presence of air. The stability of effects induced by various types of radiations increases in the sequence beta radiation - gamma radiation - fast neutrons. The radiation catalytic effect stability in the reaction increases in the same sequence.


1995 ◽  
Vol 24 (8) ◽  
pp. 699-700 ◽  
Author(s):  
Tsutomu Suzuki ◽  
Yuzo Imizu ◽  
Yoshinobu Satoh ◽  
Sunao Ozaki

2016 ◽  
Vol 198 ◽  
pp. 142-153 ◽  
Author(s):  
Carlos Valero-Vidal ◽  
Isaac Herraiz-Cardona ◽  
Valentín Pérez-Herranz ◽  
Anna Igual-Muñoz

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan Mohammad Mir ◽  
Ram Charitra Maurya ◽  
Mohd Washid Khan

Abstract A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.


Sign in / Sign up

Export Citation Format

Share Document