Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy

2012 ◽  
Vol 51 ◽  
pp. 1-15 ◽  
Author(s):  
Anna De Marco ◽  
Riccardo Spaccini ◽  
Paola Vittozzi ◽  
Fabrizio Esposito ◽  
Björn Berg ◽  
...  
2018 ◽  
Vol 64 (No. 1) ◽  
pp. 25-32
Author(s):  
Lovynska Viktoriia ◽  
Sytnyk Svitlana ◽  
Gritsan Yurii

The study evaluated the energy potential of Scots pine and black locust stands within the Northern Steppe of Ukraine, in forest plantations subordinated to the State Agency of Forest Resources (Ukraine). This study defined general values of aboveground biomass components per age-class structure in the forest stands. Allocated carbon was calculated using the biomass components by age groups as follows: stem, branches and leaves (needles). Contribution of different age groups to carbon allocation was investigated. A key role of stem wood in the process of carbon allocation in the forest stands was shown. It was found that the maximum carbon budget was accumulated in stands of both forest-forming species aged 41–60 years. The models are made on a dependence of carbon allocation in the different components of aboveground biomass by age. Results of energy content in the aboveground biomass were presented in Scots pine and black locust stands within the surveyed area. The study has shown that the energy potential of carbon accumulated in the biomass of Scots pine stands amounted to 40.31 PJ, and that of black locust stands was 32.04 PJ. Development of forest ecosystems in the Steppe zone of Ukraine can result in the optimization of abiotic conditions on a local level under the influence of the global climate changes.


1988 ◽  
Vol 18 (1) ◽  
pp. 54-63 ◽  
Author(s):  
David L. White ◽  
Bruce L. Haines ◽  
Lindsay R. Boring

To compare litter decomposition and nitrogen (N) dynamics in 16-year-old black locust and pine-hardwood forest stands, weight loss, N concentration, and litter quality of the dominant species in each stand were monitored for 863 days, using litterbags. The species studied were Robiniapseudo-acacia L. (leaflets and rachises), Liriodendrontulipifera L., and Rubus spp. (leaves and stems) in the black locust stand and Kalmialatifolia L., Pinusrigida Mill., and L. tulipifera in the pine-hardwood stand. Between-stand comparison of L. tulipifera leaf litter indicated a significant stand effect on weight loss during the first 8 months but no significant stand effects on N concentration and net immobilization. Initial lignin content was highly correlated to percent weight remaining and net N immobilization after 331 and 863 days. All litter types exhibited an absolute increase in "lignin" that appeared to originate from the more soluble litter fraction. Robiniapseudo-acacia leaflets, P. rigida, K. latifolia, and Rubus stems decomposed slowly, but only the latter two species were in the net N immobilization phase at day 863. Rubus leaf litter decomposed rapidly, releasing 70% of its original N by day 331. The role of Rubus and other understory species in influencing organic matter and N accretion in these early successional systems is discussed. Robiniapseudo-acacia leaflets contained 81% of their original N at day 863. This retention of N, coupled with its greater potential to form recalcitrant material during decomposition, suggests a mechanism to explain the long-term effects of Robiniapseudo-acacia on N storage in the forest floor and soil.


Sign in / Sign up

Export Citation Format

Share Document