scholarly journals Organic amendments as phosphorus fertilisers: Chemical analyses, biological processes and plant P uptake

2017 ◽  
Vol 107 ◽  
pp. 50-59 ◽  
Author(s):  
J.E. Mackay ◽  
L.M. Macdonald ◽  
R.J. Smernik ◽  
T.R. Cavagnaro
2008 ◽  
Vol 43 (7) ◽  
pp. 893-901 ◽  
Author(s):  
Sidney Netto Parentoni ◽  
Claudio Lopes de Souza Júnior

The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.


2005 ◽  
Vol 62 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Rossini Mattos Corrêa ◽  
Clístenes Williams Araújo do Nascimento ◽  
Silvana Keely de Sá Souza ◽  
Fernando José Freire ◽  
Gleibson Barbosa da Silva

Crops in general make poor use of phosphorous fertilizer and, as a result, recommended rates and production costs are very high. Phosphorus can be made more readily available to plants by proper management of phosphate fertilization, selecting both, type of fertilizer and application method. This study was carried out to evaluate the efficiency of the natural Gafsa rock phosphate and the triple superphosphate on dry matter production and P uptake by corn plants cultivated in a greenhouse. Fertilizers were applied localized and broadcast/incorporated on to two soils with contrasting phosphorus capacity factors (PCF). Rock phosphate broadcast application was as efficient as triple superphosphate in increasing corn plant dry matter in the Tropudult, with lower PCF. This effect was not observed on the Haplustox, owing to the lower P solubility due to the higher Ca concentration in this soil. Triple superphosphate rates increased plant P uptake in both soils and for both application forms. Rock phosphate resulted in higher P-content in plants, but only for broadcast application on the Ultisol.


2020 ◽  
Author(s):  
Trung Hieu Mai ◽  
Pieterjan De Bauw ◽  
Andrea Schnepf ◽  
Roel Merckx ◽  
Erik Smolders ◽  
...  

AbstractBackground and aimsUpland rice is often grown where water and phosphorus (P) are limited and these two factors interact on P bioavailability. To better understand this interaction, mechanistic models representing small-scale nutrient gradients and water dynamics in the rhizosphere of full-grown root systems are needed.MethodsRice was grown in large columns using a P-deficient soil at three different P supplies in the topsoil (deficient, suboptimal, non-limiting) in combination with two water regimes (field capacity versus drying periods). Root architectural parameters and P uptake were determined. Using a multiscale model of water and nutrient uptake, in-silico experiments were conducted by mimicking similar P and water treatments. First, 3D root systems were reconstructed by calibrating an architecure model with observed phenological root data, such as nodal root number, lateral types, interbranch distance, root diameters, and root biomass allocation along depth. Secondly, the multiscale model was informed with these 3D root architectures and the actual transpiration rates. Finally, water and P uptake were simulated.Key resultsThe plant P uptake increased over threefold by increasing P and water supply, and drying periods reduced P uptake at high but not at low P supply. Root architecture was significantly affected by the treatments. Without calibration, simulation results adequately predicted P uptake, including the different effects of drying periods on P uptake at different P levels. However, P uptake was underestimated under P deficiency, a process likely related to an underestimated affinity of P uptake transporters in the roots. Both types of laterals (i.e. S- and L-type) are shown to be highly important for both water and P uptake, and the relative contribution of each type depend on both soil P availability and water dynamics. Key drivers in P uptake are growing root tips and the distribution of laterals.ConclusionsThis model-data integration demonstrates how multiple co-occurring single root phene responses to environmental stressors contribute to the development of a more efficient root system. Further model improvements such as the use of Michaelis constants from buffered systems and the inclusion of mycorrhizal infections and exudates are proposed.


2021 ◽  
Vol 1 ◽  
Author(s):  
Bhupinder Singh Jatana ◽  
Christopher Kitchens ◽  
Christopher Ray ◽  
Patrick Gerard ◽  
Nishanth Tharayil

Phosphorus (P) is the second most important mineral nutrient for plant growth and plays a vital role in maintaining global food security. The natural phosphorus reserves [phosphate rock (PR)] are declining at an unprecedented rate, which will threaten the sustainable food supply in near future. Rendered animal byproducts such as meat and bone meal (MBM), could serve as a sustainable alternative to meet crop phosphorus demand. Even though nitrogen (N) from MBM is readily mineralized within a few days, >75% of the P in MBM is present as calcium phosphate that is sparingly available to plants. Thus, application of MBM with the aim of meeting crop N demand could result in buildup of P reserves in soil, which necessitates the need to improve the P mobilization from MBM to achieve higher plant P use efficiency. Here, we tested the potential of two microbial inoculum-arbuscular mycorrhizal fungi (AMF) and P solubilizing fungi (Penicillium bilaiae), in improving the mobilization of P from MBM and the subsequent P uptake by maize (Zea mays). Compared to the non-inoculated MBM control, the application of P. bilaiae increased the P mobilization from MBM by more than two-fold and decreased the content of calcium bound P in the soil by 26%. However, despite this mobilization, P. bilaiae did not increase the tissue content of P in maize. On the other hand, AMF inoculation with MBM increased the plant root, shoot biomass, and plant P uptake as compared to non-inoculated control, but did not decrease the calcium bound P fraction of the soil, indicating there was limited P mobilization. The simultaneous application of both AMF and P. bilaiae in association with MBM resulted in the highest tissue P uptake of maize with a concomitant decrease in the calcium bound P in the soil, indicating the complementary functional traits of AMF and P. bilaiae in plant P nutrition from MBM. Arbuscular mycorrhizal fungi inoculation with MBM also increased the plant photosynthesis rate (27%) and root phosphomonoesterase activity (40%), which signifies the AMF associated regulation of plant physiology. Collectively, our results demonstrate that P mobilization and uptake efficiency from MBM could be improved with the combined use of arbuscular mycorrhizal fungi and P. bilaiae.


2003 ◽  
Vol 83 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Z. Zheng ◽  
L. E. Parent ◽  
J. A. MacLeod

The P dynamics in soils should be quantified in agricultural soils to improve fertilizer P (FP) efficiency while limiting the risk of P transfer from soils to water bodies. This study assessed P transformations following FP addition to Gleysolic soils. A pot experiment was conducted with five soils varying in texture from sandy loam to heavy clay, and receiving four FP rates under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. Soil resin-P and NaHCO3-Pi contents were interactively affected by texture and FP. The NaHCO3-Po, NaOH-Po, HCl-P and H2SO4-P were only affected by soil texture. Proportions of 78 and 90% of the variation in labile and total P were, respectively, related to soil clay content. The FP addition increased resin-P, NaHCO3-Pi and NaOH-Pi and -Po contents in coarse-textured soils, but the amount added was not sufficient to mask the initial influence of soil texture on the sizes of soil P pools. Plant P uptake was proportional to FP rate but less closely linked to clay content. The average increase in labile P per unit of total FP added in excess of plant exports was 0.85, 0.8 2 , 0.73, 0.55 and 0.24 for the sandy loam, loam, clay loam, clay and heavy clay soil, respectively. The results of this study stress the important of considering soil texture in Gleysolic soils when assessing P accumulation and transformations in soils, due to commercial fertilizers applied in excess of crop removal. Key words: P fractions, clay content, fertilizer P, plant P uptake, soil texture


1985 ◽  
Vol 65 (1) ◽  
pp. 47-60 ◽  
Author(s):  
M. GIROUX ◽  
T. SEN TRAN

The objective of this study was to evaluate different available P extracting methods in relation with soil properties, oat yield and plant P uptake. Six chemical extractants (Bray-1, Bray-2, new Mehlich, North Carolina DA-4, DA-10, and Olsen) and two anion exchange resins (F− and HCO3−) were compared on 42 acid soils. The DA-4, DA-10, new Mehlich, and HCO3− resin methods showed the best correlation with oat yield and plant P uptake. The Bray-1, Bray-2 methods were significantly less correlated than the other methods. The HCO3− resin was better than F− resin to predict plant P uptake and yield. Available P levels as determined by these eight methods were classified poor, medium and rich by the Cate and Nelson procedure. Oxalate extractable Al, pH (NaF), pH (H2O), exchangeable (Ca + Mg), forms of P, maximum P fixation capacity and soil texture have great influence on the plant P uptake. Soil organic matter content and oxalate-extractable Fe had significantly less important an effect. The Bray-1 and Bray-2 methods were the most affected by soil properties especially oxalate-extractable Al. The P-HCl/P-DAF ratio proposed by Mehlich to identify forms of soil P indicated that seven soils contain predominantly Ca-P and 21 soils with predominantly Al-P and Fe-P. This ratio was related with oxalate extractable Al (r = − 0.32*), pH NaF (r = − 0.59**), pH H2O (r = 0.52**) and exchangeable Ca + Mg (r = 0.55**). The maximum P fixation capacity (M) ranged from 150 to 4200 μg P/g soil and was closely related with oxalate-extractable Al (r = 0.81**), pH NaF (r = 0.74**), pH H2O (r = − 0.36*) and Mehlich ratio (r = − 0.33*). The maximum P buffering capacity (Mb) of soils was also measured and showed the best correlation with oxalate-extractable Al (r = 0.84**) and pH NaF (r = 0.53**). Key words: Soil testing, available P, anion exchange resins, P fixation, oxalate-Al, forms of P


2019 ◽  
Vol 99 (3) ◽  
pp. 292-304
Author(s):  
Tandra D. Fraser ◽  
Derek H. Lynch ◽  
Ivan P. O’Halloran ◽  
R. Paul Voroney ◽  
Martin H. Entz ◽  
...  

Soil phosphorus (P) availability may be impacted by management practices, thereby affecting plant P uptake and plant response to P amendments. The aim of this study was to determine the effects of long-term management on soil P pools and to assess the response of P bioavailability, plant growth, and P uptake to mineral versus manure P treatments. Soils were collected from plots under organic (ORG), organic with composted manure (ORG + M), conventional (CONV), and restored prairie (PRA) management. Italian ryegrass (Lolium multiflorum L.) seedlings were grown in the greenhouse for 106 d in soils amended with various rates of manure or mineral P. The ORG soil had lower concentrations of labile P (resin-P and NaHCO3-P) compared with the CONV and PRA soils, as determined by sequential P fractionation prior to planting. Ryegrass biomass (root + shoot) and shoot P uptake from soils receiving no P were significantly lower for the ORG than all other management systems. Although apparent P use efficiency of the whole plant was increased by low P rate in the ORG management system, the source of applied P, manure > mineral, only influenced Olsen test P.


2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


Sign in / Sign up

Export Citation Format

Share Document