Biophysical controls on nitrous oxide emissions following rain-induced thawing of frozen soil microcosms by simulated rainfall

2020 ◽  
Vol 149 ◽  
pp. 107960
Author(s):  
Chih-Yu Hung ◽  
Joann K. Whalen
2019 ◽  
Vol 62 (5) ◽  
pp. 1173-1183
Author(s):  
David B. Parker ◽  
Kenneth D. Casey ◽  
Heidi M. Waldrip ◽  
Byeng R. Min ◽  
Bryan L. Woodbury ◽  
...  

Abstract. Nitrous oxide (N2O) is a greenhouse gas (GHG) with a global warming potential much greater than that of carbon dioxide (CO2). Nitrous oxide is emitted from the manure-covered pen surfaces of open-lot beef cattle feedyards, and more than six million beef cattle are fed in the Southern Great Plains. A field research project was conducted to determine the temporal and spatial variability of N2O emissions from the pen surfaces of a commercial feedyard before and after simulated rainfall. Two week-long monitoring cycles were conducted in April and August 2018 in the Texas Panhandle. Temporal variability was assessed using six continuous automated flux chambers per pen, and spatial variability was assessed using a portable chamber at up to 61 locations in a single pen. Diurnal fluxes varied 5-fold to 10-fold over a 24 h period. Flux varied seasonally, with arithmetic means of 0.56 mg N2O-N m-2 h-1 in April and 3.21 mg N2O-N m-2 h-1 in August. Fluxes measured spatially across the pen surface over a 2 h period at midday were lognormally distributed, with April geometric and arithmetic means of -0.81 and 0.80 mg N2O-N m-2 h-1, respectively, and August geometric and arithmetic means of 0.095 and 2.6 mg N2O-N m-2 h-1, respectively. Fluxes peaked shortly after simulated rainfall. Arithmetic mean N2O-N flux for the 2 d after rainfall increased over the background level by 4.6-fold in April and 1.7-fold in August. Manure properties measured at the time of flux measurement were poorly correlated with N2O emissions and were of little value for predicting N2O emissions, which confirmed that further work is warranted on the biochemistry of feedyard manure. The results of this field research will help refine models for predicting N2O emissions from open-lot beef cattle feedyards and help to develop effective mitigation methods to conserve feedyard N. Keywords: Beef cattle, Flux chamber, Greenhouse gas, Manure, Nitrous oxide, Rainfall.


1997 ◽  
Vol 77 (2) ◽  
pp. 153-160 ◽  
Author(s):  
M. Nyborg ◽  
J. W. Laidlaw ◽  
E. D. Solberg ◽  
S. S. Malhi

Previous field research in Alberta has suggested that denitrification occurs mostly when soil thaws in the spring, with associated soil water saturation. Our objective was to determine if denitrification and N2O emission in fact take place in cold, thawing soil in the field. Denitrification and N2O flux were measured in two springs and the intervening summer. Cylinders were placed in soil in November, 1988, and 57 kg N ha−1 of 15Nlabeled KNO3 was added. Soil 15N mass balance technique showed 23 kg N ha−1 of added-N was lost by 15 May 1989. Gas trappings were made (28 March to 29 April) and nearly all of the N2O emission (3.5 kg N2O-N ha−1) occurred during an 11-d period of thaw. The accumulated N2O flux from 20 June to 31 August was small (0.5 kg N2O-N ha−1, or less); during that time there were no rainfall events intense enough to produce water saturated soil. In 1990, 15N-labeled KNO3 (100 kg N ha−1) was applied on 26 March (outset of the thaw) and mass balance showed 32.7 kg N ha−1of added-N was lost by 7 May. A flux of 16.3 kg N2O-N ha−1 occurred largely in a 10-d period during and immediately after soil thaw. The N2O emitted from soil left a considerable fraction of the lost N unaccounted for. This unaccounted N was most likely lost as gaseous N other than N2O (e.g., N2). We conclude that large amounts of soil nitrate may be denitrified, with smaller amounts emitted as N2O, as the soil thaws and soon thereafter. Key words: Denitrification, frozen soil, thawing soil, nitrogen, nitrous oxide


1984 ◽  
Vol 64 (2) ◽  
pp. 187-194 ◽  
Author(s):  
L. L. GOODROAD ◽  
D. R. KEENEY

We, as well as others, have observed that nitrous oxide (N2O) fluxes increased markedly during soil thaw in early spring. This phenomenon was examined further by determining nitrous oxide concentrations in the soil profile and N2O fluxes from the soil surface during the winter-spring period and evaluating physical release and microbial production of N2O on thawing of frozen soil cores in the laboratory. In mid-winter, soil profile N2O concentrations were close to ambient and surface N2O fluxes were low. At thawing, high N2O concentrations (ranging from 1082 to 2066 mg∙m−3) were found at 10–30 cm in the soil profiles of a coniferous forest, and in manure- and straw-treated plots. Concurrently, N2O flux increased markedly and reached some of the highest values observed during the entire season. When thawing was complete, soil profile N2O concentrations and N2O flux declined. Soil cores were taken from frozen soil, warmed in the laboratory, and N2O release measured. Nitrous oxide was released on warming, and cores treated with CHCl3 had a slower release rate. The results indicate that some of the N2O flux occurring at thawing is due in part to physical release of N2O, and that additional N2O is likely produced by denitrification. Key words: Nitrous oxide, denitrification, frozen soils, nitrogen loss


2017 ◽  
Vol 46 (4) ◽  
pp. 733-740 ◽  
Author(s):  
David B. Parker ◽  
Heidi M. Waldrip ◽  
Kenneth D. Casey ◽  
Richard W. Todd ◽  
William M. Willis ◽  
...  

2018 ◽  
Vol 61 (3) ◽  
pp. 1049-1061 ◽  
Author(s):  
David B. Parker ◽  
Heidi M. Waldrip ◽  
Kenneth D. Casey ◽  
Bryan L. Woodbury ◽  
Mindy J. Spiehs ◽  
...  

Abstract. Temperature is a primary factor affecting greenhouse gas (GHG) emissions from agricultural soils, but little is known about how temperature affects nitrous oxide (N2O) emissions from manure. The majority of grain-fed cattle in the Texas Panhandle are finished in large, earthen-surfaced, open-lot feedyards. Manure accumulates in feedyard pens and creates an environment high in nitrogen (N) and carbon (C) that can lead to N2O losses. In previous studies, N2O-N emissions from feedyard manure have been highly variable, ranging from negligible amounts from dry manure to 200 mg m-2 h-1 after a simulated rainfall event. The objective of this research was to determine how temperature affects N2O emissions from feedyard manure following rainfall. A recirculating flow-through, non-steady-state (RFT-NSS) chamber system with 1 m2 pans was used to monitor N2O emissions from beef cattle manure following a single 25.4 mm simulated rainfall event. Emissions were monitored at manure temperatures of 5.0°C, 11.2°C, 17.2°C, 21.5°C, 26.8°C, 31.0°C, 38.1°C, and 46.2°C. At all temperatures, a single N2O episode was observed following rainfall, peaking 2 to 11 h after rainfall with duration of 2 to 3 d. A second N2O episode was observed at temperatures =31.0°C, peaking 3 to 4 d after rainfall with duration of 18 d. When present, the second N2O episode accounted for 72% to 83% of the 20 d cumulative emissions. A step-increase in cumulative N2O emissions was observed between 26.8°C and 31.0°C, believed to be due to a major shift from denitrification to nitrification as the primary process of N2O production. Empirical regression models were developed for predicting cumulative N2O emissions based on temperature, which showed 88% agreement between predicted and field-observed N2O-N flux rates. These regression models will be useful for further quantification of N2O emissions from open-lot beef cattle feedyards in the U.S. Southern High Plains and for assessment of practices for reducing GHG emissions. Keywords: Beef cattle, Chamber, Greenhouse gas, Manure, Nitrous oxide, Precipitation.


2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document