Numerical study on seismic response of a rock slope with discontinuities based on the time-frequency joint analysis method

2020 ◽  
Vol 133 ◽  
pp. 106112 ◽  
Author(s):  
Danqing Song ◽  
Zhuo Chen ◽  
Hu Chao ◽  
Yutian Ke ◽  
Wen Nie
2021 ◽  
Author(s):  
Danqing Song ◽  
zhuo chen ◽  
Lihu Dong ◽  
Han Du

Abstract The two-dimensional dynamic analysis was used to study the dynamic response characteristics of a toppling rock slope based on the time-frequency joint analysis method using the FLAC (Fast Lagrangian Analysis of Continua). Two-dimensional dynamic analyses were carried out on two numerical models. The results of the numerical dynamic analyses show that the toppling slope has an topographic and geological dynamic amplification effect. There are an elevation and surface dynamic amplification effect in the toppling slope. The impacts of the structural planes in the models on their wave propagation characteristics and magnification effect were discussed. Directions of ground motion have impacts on the dynamic response of the models. Based on the frequency-domain analysis, the relationship between the frequency of waves and the dynamic response of the models was further studied. The geological structure have a great effect on the high-frequency components of waves. The analyses of marginal spectrum show that the energy mainly concentrated in the frequency band of seismic wave (7-10 Hz). Moreover, the seismic failure mechanism of the toppling rock slope was discussed. Geological structure determines the seismic failure mode of the slope. Cracks initiate in the top toppling plane, and the surface slope is damaged firstly under earthquake excitation; with the increase of seismic loading, a large-scale slip mass further forms gradually from the upper to the lower slope body.


2020 ◽  
Vol 8 ◽  
Author(s):  
Liang Zhang ◽  
Changwei Yang ◽  
SuJian Ma ◽  
Xueyan Guo ◽  
Mao Yue ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3190
Author(s):  
Edmundo Schanze ◽  
Gilberto Leiva ◽  
Miguel Gómez ◽  
Alvaro Lopez

Engineering practitioners do not usually include soil–structure interactions in building design; rather, it is common to model and design foundations as embedded joints with joint–based reactions. In some cases, foundation structures are modeled as rigid bodies, embedding the first story into lower vertical elements. Given that the effects of underground floors on the seismic response are not generally included in current building design provisions, it has been little explored in the literature. This work compares and analyzes models to study the effects of different underground stories modeling approaches using earthquake vibration data recorded for the 16–story Alcazar building office in downtown Viña del Mar (Chile). The modeling expands beyond an embedded first story structure to soil with equivalent springs, representing soil–structure interaction (SSI), with varying rigid soil homogeneity. The building was modeled in a finite element software considering only dead load as a static load case because the structure remained in the framing stage when the monitoring system was operating. The instruments registered 72 aftershocks from the 2010 Maule Earthquake, and this study focused on 11 aftershocks of different hypocenters and magnitudes to collect representative information. The comparisons between empirical records and models in this study showed a better fit between the model and the real vibration data for the models that do consider the SSI using horizontal springs attached to the retaining walls of the underground stories. In addition, it was observed that applying a stiffness reduction factor of 0.7 to all elements in deformation verification models for average–height buildings was suitable to analyze the behavior under small earthquakes; better results are obtained embedding the structure in the foundation level than embedding in the street level; the use of horizontal springs with Kuesel’s model with traction for the analysis of the structure yields appropriate results; it is necessary to carefully select the spring constants to be used, paying special attention to the vertical springs. Even though the results presented herein indicate that the use of vertical springs to simulate the SSI of the base slab can result in major differences concerning the real response, it is necessary to obtain more data from instrumentation across a wider variety of structures to continue to evaluate better design and modeling practices. Similarly, further analyses, including nonlinear time–history and high–intensity events, are needed to best regulate building design.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ren Yongsheng ◽  
Zhang Xingqi ◽  
Liu Yanghang ◽  
Chen Xiulong

The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.


Sign in / Sign up

Export Citation Format

Share Document