scholarly journals Numerical Study of the Seismic Response of an Instrumented Building with Underground Stories

2021 ◽  
Vol 11 (7) ◽  
pp. 3190
Author(s):  
Edmundo Schanze ◽  
Gilberto Leiva ◽  
Miguel Gómez ◽  
Alvaro Lopez

Engineering practitioners do not usually include soil–structure interactions in building design; rather, it is common to model and design foundations as embedded joints with joint–based reactions. In some cases, foundation structures are modeled as rigid bodies, embedding the first story into lower vertical elements. Given that the effects of underground floors on the seismic response are not generally included in current building design provisions, it has been little explored in the literature. This work compares and analyzes models to study the effects of different underground stories modeling approaches using earthquake vibration data recorded for the 16–story Alcazar building office in downtown Viña del Mar (Chile). The modeling expands beyond an embedded first story structure to soil with equivalent springs, representing soil–structure interaction (SSI), with varying rigid soil homogeneity. The building was modeled in a finite element software considering only dead load as a static load case because the structure remained in the framing stage when the monitoring system was operating. The instruments registered 72 aftershocks from the 2010 Maule Earthquake, and this study focused on 11 aftershocks of different hypocenters and magnitudes to collect representative information. The comparisons between empirical records and models in this study showed a better fit between the model and the real vibration data for the models that do consider the SSI using horizontal springs attached to the retaining walls of the underground stories. In addition, it was observed that applying a stiffness reduction factor of 0.7 to all elements in deformation verification models for average–height buildings was suitable to analyze the behavior under small earthquakes; better results are obtained embedding the structure in the foundation level than embedding in the street level; the use of horizontal springs with Kuesel’s model with traction for the analysis of the structure yields appropriate results; it is necessary to carefully select the spring constants to be used, paying special attention to the vertical springs. Even though the results presented herein indicate that the use of vertical springs to simulate the SSI of the base slab can result in major differences concerning the real response, it is necessary to obtain more data from instrumentation across a wider variety of structures to continue to evaluate better design and modeling practices. Similarly, further analyses, including nonlinear time–history and high–intensity events, are needed to best regulate building design.

2014 ◽  
Vol 539 ◽  
pp. 731-735 ◽  
Author(s):  
Yu Chen

In this thesis, based on the design of a 140+90m span unusual single tower and single cable plane cable-stayed bridge, free vibration characteristics and seismic response are investigated; three dimensional finite element models of a single tower cable-stayed bridge with and without the pile-soil-structure interaction are established respectively by utilizing finite element software MIDAS/CIVIL, seismic response of Response spectrum and Earthquake schedule are analyzed respectively and compared. By the comparison of the data analysis, for small stiffness span cable-stayed bridge, the pile-soil-structure interaction can not be ignored with calculation and analysis of seismic response.


2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.


2014 ◽  
Vol 912-914 ◽  
pp. 1534-1537
Author(s):  
Shao Bo Zhang ◽  
Ke Lun Wei ◽  
Bi Jian Xiao

This paper adopts large finite element software ANSYS to establish finite element model of twin-tower building with enlarged base, uses dynamic time history analysis method for seismic response calculation, compare and analyze the calculation results of twin-tower building with enlarged base under elastic boundary conditions and rigid boundary conditions. The results showe that dynamic response for model under elastic boundary conditions is larger than dynamic response for model under rigid boundary conditions, and elastic boundary conditions is more close to the actual situation.


Author(s):  
Tomasz Falborsk ◽  
Natalia Lasowicz

The present paper presents the results of the numerical study designed to investigate the soil-structure flexibility effects on modal parameters (i.e. fundamental frequencies) and time-history analysis response (represented by the top relative displacements) of a 46.8 m high steel lattice tower subjected to a number of ground motions including also one mining tremor. In addition to the fixed-base condition, three different soil types (i.e. dense soil, stiff soil, and soft soil) were considered in this investigation. Site conditions were characterized by their average effective profile velocities, Poisson’s ratios, and finally mass densities. Soil-foundation flexibility was introduced using the spring-based approach, utilizing foundation springs and dashpots. The first step was to investigate the influence of different base conditions on modal parameters of the steel lattice tower. In the final part of the current study time-history analysis was performed using different two-component ground motion records (in two horizontal, mutually perpendicular directions). The results obtained indicate that modal parameters and dynamic response of the structure may be considerably affected by the soil-structure interaction effects. Therefore, the present paper confirms the necessity of utilizing soil-flexibility into numerical research.


2014 ◽  
Vol 6 (2) ◽  
pp. 43-61 ◽  
Author(s):  
Shehata E. Abdel Raheem ◽  
Mohamed M. Ahmed ◽  
Tarek M. A. Alazrak

Recent studies show that the effects of Soil Structure Interaction (SSI) may be detrimental to the seismic response of structure and neglecting SSI in analysis may lead to un-conservative design. Despite this, the conventional design procedure usually involves assumption of fixity at the base of foundation neglecting the flexibility of the foundation, the compressibility of soil mass and consequently the effect of foundation settlement on further redistribution of bending moment and shear force demands. The effects of SSI are analyzed for typical multi-story building resting on raft foundation. Three methods of analysis are used for seismic demands evaluation of the target moment resistant frame buildings: equivalent static load (ESL); response spectrum (RS) methods and nonlinear time history (TH) analysis with suit of nine time history records. Three-dimensional Finite Element (FE) model is constructed to analyze the effects of different soil conditions and number of stories on the vibration characteristics and seismic response demands of building structures. Numerical results obtained using soil structure interaction model conditions are compared to those corresponding to fixed-base support conditions. The peak responses of story shear, story moment, story displacement, story drift, moments at beam ends, as well as force of inner columns are analyzed.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Vahid Bahreini ◽  
Tariq Mahdi ◽  
MohammadMahdi Najafizadeh

Masonry infill walls are one of the main forms of interior partitions and exterior walls in many parts of the world. Nevertheless, serious damage and loss of stability of many masonry infill walls had been reported during recent earthquakes. To improve their performance, the interaction between these infill walls and the bounding frames needs to be properly investigated. Such interaction can dramatically increase the stiffness of the frame in the in-plane direction. To avoid the negative aspects of inappropriate interactions between the frame and infill wall, some kind of isolation needs to be introduced. In this paper, three different configurations have been evaluated by using the general finite element software, ABAQUS. Nonlinear pushover and time history analyses have been conducted for each of the three configurations. Results showed that isolation of the infill from the frame has a significant effect on the in-plane response of infilled frames. Furthermore, adequate out-of-plane stability of the infill wall has been achieved. The results show that masonry infill walls that have full contact at the top of the wall but isolated from columns have shown acceptable performance.


2014 ◽  
Vol 580-583 ◽  
pp. 1704-1707
Author(s):  
Yu Lin Deng ◽  
Yu Bian ◽  
Fan Lei

Submarine pipelines are described as the lifeblood of offshore oil and it is crucial to ensure the seismic safety of the submarine pipelines. Based on the fluid-structure interaction numerical analysis method and by using finite element software ADINA, the analysis models of the free long-span submarine flexible pipelines under earthquakes were established. By employing dynamic time-history method, the influences of fluid-structure interaction on the seismic response of the submarine pipelines were researched. The results showed that the peak normal stress and the peak displacement of submarine pipelines’ mid-span considering the influences of the fluid-structure interaction are greater than those without considering the influences, and the influences of the fluid-structure interaction on the seismic response of the submarine pipelines will increase with the increase of the submarine pipelines‘ diameter.


Effect of soil-structure interaction (SSI) on seismic response of bridges is not clearly understood, and in general practice, bridge design is carried out ignoring its effect. This is due to the general consensus that fixed base leads to a more conservative design despite the fact that many researchers indicate that ignoring soil-structure interaction may lead to underestimation of seismic response. The current paper aims to investigate the effect of SSI on the nonlinear seismic behavior of 9-span continuous bridge supported on pile foundation penetrating sandy soils. Three types of soils were investigated representing medium to stiff sandy soil. Both pushover analysis and nonlinear time history incremental dynamic analysis are carried out using Opensees to investigate the effect of SSI on the seismic response parameters (namely, fundamental period, pushover curves, foundation rigid body motions, global ductility capacity and demand, and maximum drift ratio) of the bridge and to compare it to fixed base assumption (i.e., SSI ignored). The results indicate that although SSI increases the flexibility of the structure (accordingly increasing fundamental period), the seismic demand of the bridge increases. This increase is more pronounced as the soil becomes softer.


2014 ◽  
Vol 580-583 ◽  
pp. 1718-1722
Author(s):  
Li Ping Liu ◽  
Ji Jin Liu ◽  
An Liang Li ◽  
Ming Zi Tan

The seismic response of step-terrace frame structure is affected by the slope. Considered soil parameters of slope, the floor numbers and span numbers of layers below the scarp, 45 step-terrace frame example structures were designed, and three excitations at bedrock were selected to analyze the example structures response with dynamic time-history analysis method. The research indicates that when the other conditions are the same, the soil becomes softer, or structure's span numbers on the slope becomes larger or the slope becomes higher, the dynamic interaction between slope and step-terrace frame structure becomes more obvious. When the inputted ground motion at slope foot is adopted and the slope soil is soft, the seismic response of structure without soil-structure interaction is smaller than that of with soil-structure interaction.


Sign in / Sign up

Export Citation Format

Share Document