Erratum to “Analysis of short-term solar radiation data” [Solar Energy 79 (5) (2005) 495–504]

Solar Energy ◽  
2006 ◽  
Vol 80 (1) ◽  
pp. 139-140 ◽  
Author(s):  
G. Vijayakumar ◽  
M. Kummert ◽  
S.A. Klein ◽  
W.A. Beckman
2021 ◽  
Author(s):  
Yesi Sianturi ◽  
Ardhasena Sopaheluwakan ◽  
Tamima Amin ◽  
Kwarti A. Sartika ◽  
Andhika Hermawanto ◽  
...  

<p>Indonesia is one of the tropical regions with strong solar radiation exposure throughout the year, and this indicates the large potential for solar energy utilization in the country. Nevertheless, the utilization of solar energy in Indonesia until 2020 had only reached 10 MWp, as reported by the Ministry of Energy and Mineral Resources (ESDM), which is very small compared to the total potential of solar energy in Indonesia (approximately 112,000 GWp). One of the challenges for the development of solar energy in Indonesia is the weather and climate factors, as several weather parameters can cause intermittency in solar energy input in this region.</p><p>In the solar energy sector, a reliable forecast of potential energy input is of great importance in designing operational plans, whether it is a short-term, annual, or longer-term work plan. Global horizontal irradiance is an important quantity to determine the power generated from photovoltaic devices, and different resources are used to generate global radiation forecasts all over the world, ranging from ground-observed radiation, remote sensing observation, to numerical weather models. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides solar radiation forecasts for various timescales, from hourly forecast to monthly and seasonal forecast. Whilst short-term solar radiation forecast is provided by other standard weather forecasting models, forecasts in the longer timescale are less commonly available and thus the seasonal forecast becomes a valuable information in making long-term operational plans.</p><p>A new solar radiation observation network has been installed in a number of locations across Indonesia in recent years, which allows the evaluation and modification of the seasonal forecast generated by the model. To improve the performance of the forecast, a statistical post-processing approach is implemented, by making use of measurements provided by the radiation observation network and ERA5 reanalysis dataset. To generate historical solar radiation data in all parts of Indonesia, a co-kriging interpolation of the ground-observed solar radiation is executed, using reanalysis data as an external drift in the interpolation process. The new gridded solar radiation data is then utilized to create transfer functions that represent the relationship between the statistical moments of both the numerical model output and observed radiation based on its probabilistic distributions. The transfer functions are generated in the training period, which will then be used to modify the model output in the forecast period. The implementation of the bias-correction process applied in this explorative study is aimed to provide the foundation of solar radiation prediction information that will support the operational activities of solar energy production in Indonesia.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Haixiang Zang ◽  
Qingshan Xu ◽  
Pengwei Du ◽  
Katsuhiro Ichiyanagi

A modified typical meteorological year (TMY) method is proposed for generating TMY from practical measured weather data. A total of eleven weather indices and novel assigned weighting factors are applied in the processing of forming the TMY database. TMYs of 35 cities in China are generated based on the latest and accurate measured weather data (dry bulb temperature, relative humidity, wind velocity, atmospheric pressure, and daily global solar radiation) in the period of 1994–2010. The TMY data and typical solar radiation data are also investigated and analyzed in this paper, which are important in the utilizations of solar energy systems.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Danny H. W. Li ◽  
Tony N. T. Lam

A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces facing various orientations and monthly solar radiations at the optimal tilt surface and three vertical planes facing east, south, and west were determined. The energy outputs and efficiencies were simulated using a computer package. The environmental benefits in terms of greenhouse gases reductions and cost implications were also considered. The findings provide technical information for engineers to design and evaluate photovoltaic (PV) systems which could contribute to the environmental, energy, and economic aspects.


Author(s):  
Muchamad Rizky Nugraha ◽  
Andi Adriansyah

<span>Solar energy is a result of the nuclear fusion process in the form of a series of thermonuclear events that occur in the Sun's core. Solar radiation has a significant impact on the lives of all living things on earth. The uses, as mentioned earlier, are when the solar radiation received requires a certain amount and vice versa. As a result, a more accurate instrument of solar radiation is required. A specific instrument is typically used to measure solar radiation parameters. There are four solar radiation parameters: diffusion radiation, global radiation, direct radiation, and solar radiation duration. Thus, it needs to use many devices to measure radiation data. The paper designs to measure all four-radiation data by pyranometer with particular modification and shading device. This design results have a high correlation with a global standard with a value of R=0.73, diffusion with a value of R=0.60 and a sufficiently strong direct correlation with a value of R=0.56. It can be said that the system is much simpler, making it easier to monitor and log the various solar radiation parameters.</span>


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1187
Author(s):  
Rami Al-Hajj ◽  
Ali Assi ◽  
Mohamad Fouad ◽  
Emad Mabrouk

The integration of solar energy in smart grids and other utilities is continuously increasing due to its economic and environmental benefits. However, the uncertainty of available solar energy creates challenges regarding the stability of the generated power the supply-demand balance's consistency. An accurate global solar radiation (GSR) prediction model can ensure overall system reliability and power generation scheduling. This article describes a nonlinear hybrid model based on Long Short-Term Memory (LSTM) models and the Genetic Programming technique for short-term prediction of global solar radiation. The LSTMs are Recurrent Neural Network (RNN) models that are successfully used to predict time-series data. We use these models as base predictors of GSR using weather and solar radiation (SR) data. Genetic programming (GP) is an evolutionary heuristic computing technique that enables automatic search for complex solution formulas. We use the GP in a post-processing stage to combine the LSTM models’ outputs to find the best prediction of the GSR. We have examined two versions of the GP in the proposed model: a standard version and a boosted version that incorporates a local search technique. We have shown an improvement in terms of performance provided by the proposed hybrid model. We have compared its performance to stacking techniques based on machine learning for combination. The results show that the suggested method provides significant improvement in terms of performance and consistency.


Sign in / Sign up

Export Citation Format

Share Document