scholarly journals Determining the Optimum Tilt Angle and Orientation for Solar Energy Collection Based on Measured Solar Radiance Data

2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Danny H. W. Li ◽  
Tony N. T. Lam

A prior requirement to the design of any solar-based conversion systems is the knowledge of optimum orientation and tilt surface at which peak solar energy can be collected. In many parts of the world, however, the solar radiation data for the surfaces of interest are not always available. This paper presents a numerical approach to calculate the solar radiation on sloped planes by integrating the measured sky radiance distributions. The annual total solar yield at different sloped surfaces facing various orientations and monthly solar radiations at the optimal tilt surface and three vertical planes facing east, south, and west were determined. The energy outputs and efficiencies were simulated using a computer package. The environmental benefits in terms of greenhouse gases reductions and cost implications were also considered. The findings provide technical information for engineers to design and evaluate photovoltaic (PV) systems which could contribute to the environmental, energy, and economic aspects.

Solar Energy ◽  
2006 ◽  
Vol 80 (1) ◽  
pp. 139-140 ◽  
Author(s):  
G. Vijayakumar ◽  
M. Kummert ◽  
S.A. Klein ◽  
W.A. Beckman

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Haixiang Zang ◽  
Qingshan Xu ◽  
Pengwei Du ◽  
Katsuhiro Ichiyanagi

A modified typical meteorological year (TMY) method is proposed for generating TMY from practical measured weather data. A total of eleven weather indices and novel assigned weighting factors are applied in the processing of forming the TMY database. TMYs of 35 cities in China are generated based on the latest and accurate measured weather data (dry bulb temperature, relative humidity, wind velocity, atmospheric pressure, and daily global solar radiation) in the period of 1994–2010. The TMY data and typical solar radiation data are also investigated and analyzed in this paper, which are important in the utilizations of solar energy systems.


Author(s):  
Muchamad Rizky Nugraha ◽  
Andi Adriansyah

<span>Solar energy is a result of the nuclear fusion process in the form of a series of thermonuclear events that occur in the Sun's core. Solar radiation has a significant impact on the lives of all living things on earth. The uses, as mentioned earlier, are when the solar radiation received requires a certain amount and vice versa. As a result, a more accurate instrument of solar radiation is required. A specific instrument is typically used to measure solar radiation parameters. There are four solar radiation parameters: diffusion radiation, global radiation, direct radiation, and solar radiation duration. Thus, it needs to use many devices to measure radiation data. The paper designs to measure all four-radiation data by pyranometer with particular modification and shading device. This design results have a high correlation with a global standard with a value of R=0.73, diffusion with a value of R=0.60 and a sufficiently strong direct correlation with a value of R=0.56. It can be said that the system is much simpler, making it easier to monitor and log the various solar radiation parameters.</span>


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3172 ◽  
Author(s):  
Xiaoyang Song ◽  
Yaohuan Huang ◽  
Chuanpeng Zhao ◽  
Yuxin Liu ◽  
Yanguo Lu ◽  
...  

Solar energy is the most clean renewable energy source and has good prospects for future sustainable development. Installation of solar photovoltaic (PV) systems on building rooftops has been the most widely applied method for using solar energy resources. In this study, we developed an approach to simulate the monthly and annual solar radiation on rooftops at an hourly time step to estimate the solar PV potential, based on rooftop feature retrieval from remote sensing images. The rooftop features included 2D rooftop outlines and 3D rooftop parameters retrieved from high-resolution remote sensing image data (obtained from Google Maps) and digital surface model (DSM, generated from the Pleiades satellite), respectively. We developed the building features calculation method for five rooftop types: flat rooftops, shed rooftops, hipped rooftops, gable rooftops and mansard rooftops. The parameters of the PV modules derived from the building features were then combined with solar radiation data to evaluate solar photovoltaic potential. The proposed method was applied in the Chao Yang District of Beijing, China. The results were that the number of rooftops available for PV systems was 743, the available rooftop area was 678,805 m2, and the annual PV electricity potential was 63.78 GWh/year in the study area, which has great solar PV potential. The method to perform precise calculation of specific rooftop solar PV potential developed in this study will guide the formulation of energy policy for solar PV in the future.


2014 ◽  
Vol 3 (1) ◽  
pp. 83-90
Author(s):  
Sonia Sarapata

Abstract The country’s energy security risk, as well as a desire to protect the environment from the pollution and degradation which are the results of conventional fuels acquisition - these was a motivation for intensive researches on the use of renewable energy sources in eco - innovative installations. Solar radiation is one of the self - renewable energy sources which can be used both as a source of electricity and heat. The area of research is Sosnowiec city located in the south of Poland in the eastern part of Silesia voivodeship. The solar radiation data covering the years 2003 to 2013 was used. The intra - annual variability of daily averaged solar radiation hesitated in a wide range from 0.6 kWh/m2 (December) to 5.2 kWh/m2 (June). Day duration varies on average from 10 hours in January, November and December to 17 hours in May, June and July. Day occupies 56% of the 8767 hours in year. On average the largest amount of energy reached the analyzed area in July: 157 kWh/m2 (15% of the annual average), while the smallest in December: 18 kWh/m2 (less than 2% of the annual average). The 75% of the average annual total of energy falls on the period from 1st March to 31th August (spring - summer). The range of the annual solar radiation was determined by the minimum of 980 kWh/m2 and the maximum of 1094 kWh/m2. In Sosnowiec the average annual irradiation total on the horizontal surface amounts to 1052 kWh/m2 (2003 - 2013)


2014 ◽  
Vol 633-634 ◽  
pp. 941-946
Author(s):  
Xin Qun Feng ◽  
Bo Han Yang

In this paper, taking Shanghai residential area as the main body, and through the research and analysis to the main two residential types in Shanghai area and regard solar energy visor as the research object, explore the characteristics and design method of it. According to the Shanghai annual solar radiation data, using the histogram method and analyze the regional characteristics of Shanghai area, provide reference and basis for residential building solar visor design.


Author(s):  
Ali Saleh Aziz ◽  
Mohammad Faridun Naim Tajuddin ◽  
Sanjeevikumar Padmanaban ◽  
Lucian Mihet-Popa ◽  
Mohd Rafi Adzman ◽  
...  

The There are many factors influencing the performance of photovoltaic (PV) systems. Among these factors, temperature and solar radiation are two major parameters that have a large effect on the efficiency of PV systems. The cell temperature of PV panels is related to the ambient temperature while the solar radiation incident on the surface of the PV modules depends on the slope and azimuth of these modules. Furthermore, ground reflectance (albedo) affects the irradiance incident on the PV panel surface, which in turn affects the output of a PV system. Nevertheless, the effects of these factors on the economic performance of the solar PV systems are scarcely reported. This paper presents a complete design of a stand-alone PV/battery system to supply electric power for a mobile base station in Choman, Erbil, Iraq. The effects of different factors on the total electricity produced by PV arrays and its economic performance are simultaneously investigated. HOMER software has been used as a tool for the techno-economic and environmental analysis. As indicated from the simulation results, the PV array capacity and its economic performance are highly affected by the variation of the slope and azimuth. With a base case (albedo of 20% and average annual ambient temperature of 11°C), the best feasible system which is achieved by facing PV due to south with a tilt angle of 40° or 45°, is found to have net present cost (NPC) of 70595 $ and cost of energy (COE) of 0.54 $/kWh. Moreover, the results indicate that increasing the ground reflectance from 10% to 90% results in a 7.2% decrease in the PV array capacity and about 3% decrease in the NPC and COE. On the other hand, increasing the ambient temperature from 0°C to 40°C results in a 19.7% increase in the PV array capacity and an 8.2% increase in the NPC and COE. Furthermore, according to the ambient temperature of Choman, using PV modules with high sensitivity to temperature is found to be an attractive option. Provided simulation performance analysis proves that the studied parameters must be treated well to establish an enabling environment for solar energy development in Iraq.


2007 ◽  
Vol 11 (4) ◽  
pp. 125-134 ◽  
Author(s):  
Snezana Dragicevic ◽  
Nikola Vuckovic

Serbia is becoming more dependent on imported primary energy to meet its increasing energy demand. The ratio of indigenous primary energy production to primary energy consumption is decreasing. Therefore, it is of great importance for Serbia to make use of its indigenous energy resources more effectively, including its solar energy potential. Knowledge of global solar radiation is essential in the prediction, study, and design of the economic viability of systems which use solar energy. In this paper, the solar radiation data on Cacak (lat 43.87?N, long 20.33?E) are analyzed based on 4 years of global solar radiation data measured on a horizontal surface. The distributional solar radiation parameters are derived from the available data and analyzed. The available solar radiation data on a horizontal surface are converted to that of various tilt angles and the yearly and monthly optimum tilt angles are determined.


Sign in / Sign up

Export Citation Format

Share Document