Numerical study of a hybrid ventilation system for single family houses

Solar Energy ◽  
2007 ◽  
Vol 81 (2) ◽  
pp. 227-239 ◽  
Author(s):  
David Jreijiry ◽  
Ahmad Husaunndee ◽  
Christian Inard
2018 ◽  
Vol 113 ◽  
pp. 388-400 ◽  
Author(s):  
Fan Geng ◽  
Gang Luo ◽  
Yingchao Wang ◽  
Zhengbiao Peng ◽  
Shengyong Hu ◽  
...  

2017 ◽  
Vol 149 ◽  
pp. 123-132 ◽  
Author(s):  
Maria Hurnik ◽  
Aleksandra Specjal ◽  
Zbigniew Popiolek

Author(s):  
Rabbani Rasha ◽  
M. Tariq Iqbal

This paper represents an energy consumption and heat loss analysis of a heat recovery ventilator unit in a single-family detached house in St. John’s, NL, Canada. An energy-efficient house is a growing attraction to control the air infiltration, provide a comfortable environment with reduced yearly electricity cost. A mechanical induced ventilation system is inevitable to increase energy efficiency and to reduce greenhouse gas emissions of the house in order to supply fresh air. A heat recovery ventilator (HRV) is an air to air heat exchangers that recovers heat from inside of the house and delivers this preheated and fresh air to the space for maintaining the occupant’s comfort. In this paper, yearly energy consumption with the heat loss of a typical heat recovery ventilator unit is presented. MATLAB, BE opt, and Microsoft Excel are used to do all necessary simulation with calculation using one-year logged data. Methodology, results with graphs and detailed analysis of this research are included in this paper. This research indicates that the cost of running a HRV for a year in a house in St. John’s could be as high as $484 per year with an unknown air quality improvement.


2019 ◽  
Vol 85 ◽  
pp. 02015 ◽  
Author(s):  
Charles Berville ◽  
Matei-Răzvan Georgescu ◽  
Ilinca Năstase

The current concept of Crew Quarters on board of the International Space Station has several issues according to the crew member’s feedback. Major issues concern noise levels, the accumulation of CO2 and the quality of the air distribution. Our study targets the airflow distribution, to diagnose this issue, we realise a series of numerical simulations (CFD) based on a real scale replica of the Crew Quarters. Simulations were set with a zero-gravity mode and with the theoretical air parameters inside the SSI. The geometry includes a thermal manikin having the neutral posture of a body in the absence of gravity. Numerical simulations were run for the three different air flow rates provided by the current ventilation system. Results have shown that the air distribution inside the Crew Quarter is insufficient for low airflow rates but becomes acceptable for the higher airflow rate, however the higher airflow rate can potentially produce draught discomfort.


Author(s):  
Alessandro Corsini ◽  
Giovanni Delibra ◽  
Stefano Minotti ◽  
Stefano Rossin

Gas turbines enclosures entail a high number of auxiliary systems which must be preserved from heat, ensuring therefore the long term operation of the internal instrumentation and of the data acquisition system. A dedicated ventilation system is designed to keep the enclosure environment sufficiently cool and dilute any gas coming from potential internal leakage to limiting explosion risks. These systems are equipped with axial fans, usually fed with air coming from the filter house which provides air to the gas turbine combustion system, through dedicated filters. The axial fans are embedded in a ducting system which discharges fresh air inside the enclosure where the gas turbine is housed. As the operations of the gas turbine need to be guaranteed in the event of fan failure, a backup redundant system is located in a duct parallel to the main one. One of the main requirements of a ventilation fan is the reliability over the years as the gas turbine can be installed in remote areas or unmanned offshore platforms with limited accessibility for unplanned maintenance. For such reasons, the robustness of the ventilation system and a proper understanding of coupling phenomena with the axial fan is a key aspect to be addressed when designing a gas-turbine system. Here a numerical study of a ventilation system carried out with RANS and LES based methodologies will be presented where the presence of the fan is synthetized by means of static pressure discontinuity. Different operations of the fans are investigated by means of RANS in order to compare the different operating points, corresponding to 1) clean and 2) dirty filters operations, 3) minimum and 4) maximum pressure at the discharge section. Large Eddy Simulations of the same duct were carried out in the maximum loading condition for the fan to investigate the unsteady response of the system and validate its correct arrangement. All the simulations were carried out using OpenFOAM, a finite volume open source code for CFD analysis, treating the filters as a porous medium and the fan as a static pressure discontinuity according to the manufacturer’s characteristic curve. RANS modelling was based on the cubic k-ε model of Lien et al. while sub-grid scale modelling in LES was based on the 1 equation model of Davidson. Computations highlighted that the ventilation system was able to work in similarity for flow rates between 15 m3/s and 23.2 m3/s and that the flow conditions onto the fan suggest that the aerodynamic stress on the device could be reduced introducing in the duct flow straighteners or inlet guided vanes.


Sign in / Sign up

Export Citation Format

Share Document