On the sensitivity of open-circuit voltage and fill factor on dangling bond density and Fermi level position in amorphous silicon p–i–n solar cell

2006 ◽  
Vol 90 (9) ◽  
pp. 1254-1272 ◽  
Author(s):  
S.R. Dhariwal ◽  
Manu Smirty
1989 ◽  
Vol 145 ◽  
Author(s):  
V. S. Sundaram ◽  
J. E. Avery ◽  
G. R. Girard ◽  
H. E. Hager ◽  
A. G. Thompson ◽  
...  

AbstractUsing an alternate arsenic source, namely, Tertiary Butyl Arsine, a concentrator GaAs solar cell has been grown in a low pressure metal organic chemical vapor deposition reactor. Under 72 sun, air mass 1.5 illumination, the cell had an open circuit voltage of 1.1 V, a fill factor of 83% and an overall efficiency of 21%.


2012 ◽  
Vol 569 ◽  
pp. 172-175
Author(s):  
Peng Wang ◽  
Li Bo Fan ◽  
Meng Yuan Yang ◽  
Zhen Hua Zhang ◽  
Xin Bing Zhu ◽  
...  

A new hybrid film solar cell was made with a structure of Glass/ITO/PbS/P3HT/Al. PbS film was prepared by a simple solid-solid reaction and poly(3-hexylthiophene) (P3HT) film was obtained by a spin coating method. The solar cells are photosensitive in a large spectral range (extending from near infrared to high energy side regions). Without any special treatment, the cell with an area of 0.15 cm2 has shown values of open-circuit voltage (Voc) of 85 mV and fill factor (FF) of 0.33 under an illumination intensity of 100 mW/cm2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Zhao ◽  
Cindy G. Tang ◽  
Zong-Long Seah ◽  
Qi-Mian Koh ◽  
Lay-Lay Chua ◽  
...  

AbstractAs electrode work function rises or falls sufficiently, the organic semiconductor/electrode contact reaches Fermi-level pinning, and then, few tenths of an electron-volt later, Ohmic transition. For organic solar cells, the resultant flattening of open-circuit voltage (Voc) and fill factor (FF) leads to a ‘plateau’ that maximizes power conversion efficiency (PCE). Here, we demonstrate this plateau in fact tilts slightly upwards. Thus, further driving of the electrode work function can continue to improve Voc and FF, albeit slowly. The first effect arises from the coercion of Fermi level up the semiconductor density-of-states in the case of ‘soft’ Fermi pinning, raising cell built-in potential. The second effect arises from the contact-induced enhancement of majority-carrier mobility. We exemplify these using PBDTTPD:PCBM solar cells, where PBDTTPD is a prototypal face-stacked semiconductor, and where work function of the hole collection layer is systematically ‘tuned’ from onset of Fermi-level pinning, through Ohmic transition, and well into the Ohmic regime.


2011 ◽  
Vol 347-353 ◽  
pp. 3666-3669
Author(s):  
Ming Biao Li ◽  
Li Bin Shi

The AMPS-ID program is used to investigate optical and electrical properties of the solar cell of a-SiC:H/a-Si1-xGex:H/a-Si:H thin films. The short circuit current density, open circuit voltage, fill factor and conversion efficiency of the solar cell are investigated. For x=0.1, the conversion efficiency of the solar cell achieve maximum 9.19 % at the a-Si1-xGex:H thickness of 340 nm.


2018 ◽  
Vol 282 ◽  
pp. 300-305 ◽  
Author(s):  
Dilara Gokcen Buldu ◽  
Jessica de Wild ◽  
Thierry Kohl ◽  
Sunil Suresh ◽  
Gizem Birant ◽  
...  

Interface quality plays a key role in solar cell applications. Interface recombination at the front and rear surfaces, which determine this quality, have significant effects on open circuit voltage and fill factor values. In this work, several surface treatments were applied on Cu(In,Ga)Se2 (CIGS) surfaces to improve the interface quality. Besides, the passivation layer implementation was investigated to reduce interface recombination between the buffer and absorber layers.


Sign in / Sign up

Export Citation Format

Share Document