Computational comparison of conventional and inverted organic photovoltaic performance parameters with varying metal electrode surface workfunction

2014 ◽  
Vol 120 ◽  
pp. 572-583 ◽  
Author(s):  
Christopher E. Petoukhoff ◽  
Divya K. Vijapurapu ◽  
Deirdre M. O’Carroll
2020 ◽  
Author(s):  
Mitsunori Kitta

This manuscript propose the operando detection technique of the physical properties change of electrolyte during Li-metal battery operation.The physical properties of electrolyte solution such as viscosity (η) and mass densities (ρ) highly affect the feature of electrochemical Li-metal deposition on the Li-metal electrode surface. Therefore, the operando technique for detection these properties change near the electrode surface is highly needed to investigate the true reaction of Li-metal electrode. Here, this study proved that one of the atomic force microscopy based analysis, energy dissipation analysis of cantilever during force curve motion, was really promising for the direct investigation of that. The solution drag of electrolyte, which is controlled by the physical properties, is directly concern the energy dissipation of cantilever motion. In the experiment, increasing the energy dissipation was really observed during the Li-metal dissolution (discharge) reaction, understanding as the increment of η and ρ of electrolyte via increasing of Li-ion concentration. Further, the dissipation energy change was well synchronized to the charge-discharge reaction of Li-metal electrode.This study is the first report for direct observation of the physical properties change of electrolyte on Li-metal electrode reaction, and proposed technique should be widely interesting to the basic interfacial electrochemistry, fundamental researches of solid-liquid interface, as well as the battery researches.


2012 ◽  
Vol 13 (12) ◽  
pp. 2865-2869 ◽  
Author(s):  
Ya-Dong Liu ◽  
Bei Chu ◽  
Zi-Sheng Su ◽  
Wen-Lian Li ◽  
Tao-Jun Zhuang ◽  
...  

2017 ◽  
Vol 8 (7) ◽  
pp. 5095-5100 ◽  
Author(s):  
Wisnu Tantyo Hadmojo ◽  
Dajeong Yim ◽  
Havid Aqoma ◽  
Du Yeol Ryu ◽  
Tae Joo Shin ◽  
...  

We developed a novel NIR-harvesting n-type porphyrin derivative, PDI–PZn–PDI, that shows a low bandgap of 1.27 eV. Panchromatic absorption was extended to the NIR area with a significantly low energy loss of 0.54 eV which led to promising photovoltaic performance.


Author(s):  
Sevil ŞENER

The synthesis and spectroscopic characterization of an innovative ball-type cobalt (II)  metallophthalocyanine 4, bridged by four 1,2-bis(2-hydroxymethyl)-O-carborane (HMOC) 1 units has been achieved. The structure of 4 was characterized via elemental analysis, UV–visible absorption spectroscopy, FT-IR spectroscopy, and MALDI-TOF mass spectrometry. The photovoltaic performance of the newly synthesized compound in dye-sensitized solar cells was investigated. In order to clarify the effect of dye-sensitization time on photovoltaic performance parameters, the sensitization time was varied from 12 to 60 h and the performance parameters were investigated. It was found that sensitization time had a strong effect on the main performance parameters. The best photovoltaic performance was achieved after sensitization for 36 h (short circuit current density, 6.41 mA cm−2; overall conversion efficiency, 3.42%). Geometry optimization of the molecule was performed using density functional theory and shows a peripheral structure.


2014 ◽  
Vol 2 (48) ◽  
pp. 20889-20895 ◽  
Author(s):  
Makoto Karakawa ◽  
Takabumi Nagai ◽  
Kenji Adachi ◽  
Yutaka Ie ◽  
Yoshio Aso

Novel [60]fulleropyrrolidine derivatives were synthesized and evaluated based on device performance. TheN-phenyfulleropyrrolidines showed better photovoltaic performance than theN-alkyl derivatives and showed high PCE up to 7.3% on combination with PTB7.


2020 ◽  
Author(s):  
Jinggang Lan ◽  
Vladimir V. Rybkin ◽  
Marcella Iannuzzi

<div><div><div><p>The enhanced probability of water dissociation at the aqueous electrode interfaces is predicted by path-integral ab initio molecular dynamics. The ionization process is observed at the aqueous platinum interface when nuclear quantum effects are introduced in the statistical sampling, while minor effects have been observed at the gold interface. We characterize the dissociation mechanism and the dynamics of the formed water ions. In spite of the fact that the concentration and lifetime of the ions might be challenging to be experimentally detectable, they may serve as a guide to future experiments. Our observation might have a significant impact on the understanding of electrochemical processes occurring at the metal electrode surface.</p></div></div></div>


2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Hamed Moeini Alishah ◽  
Fatma Pinar Gokdemir Choi ◽  
Ugur Deneb Menda ◽  
Cihangir Kahveci ◽  
Macide Canturk Rodop ◽  
...  

Abstract. Bathocuproine (BCP) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is a well-known material that is employed as a hole-blocking layer between electron transport layer (ETL) and metal electrode in perovskite solar cells. It has been demonstrated that the use of BCP as a buffer layer between the ETL and the metal electrode in perovskite solar cells is highly beneficial. In literature, BCP is coated using vacuum processing techniques. Vacuum processing techniques require more energy and cost-effective processing conditions. In this work, we used BCP layers processed through wet processing techniques using sol-gel method with different concentrations. We achieved a short circuit current density (Jsc) of 16.1 mA/cm2 and an open circuit voltage (Voc) of 875 mV were acquired and a fill factor (FF) of 0.37 was calculated for perovskite solar cells without a BCP layer leading to a power conversion efficiency (PCE) of 5.32 % whereas Jsc of 19 mA/cm2, Voc of 990 mV were achieved and a FF of 0.5 was calculated for perovskite solar cells employing BCP layers with concentration of 0.5 mg/ml and spin cast at 4000 rpm, leading to a PCE of 9.4 %. It has been observed that the use of a BCP layer with an optimized concentration led to an improved device performance with an increase of 77 % in PCE in ambient air under high humidity conditions for planar structure perovskite solar cells in the configuration of ITO/NiOx/MAPbI3/PCBM/BCP/Ag.  Resumen. Batocuproina (BCP) (2,9-dimetil-4,7-difenil-1,10-fenantrolina) es un material que se emplea como capa de bloqueo de huecos entre la capa transportadora de electrones (ETL) y el electrodo metálico en celdas solares basados en perovskitas. Se ha demostrado que el uso de BCP como capa amortiguadora entre el ETL y el electrodo metálico en las celdas solares de perovskita es beneficioso. Comúnmente el BCP se recubre mediante técnicas de procesamiento al vacío, las cuales requieren altos costos energéticos. En este trabajo utilizamos capas de BCP procesadas mediante técnicas de procesamiento húmedo utilizando el método sol-gel. Logramos una densidad de corriente de cortocircuito (Jsc) de 16.1 mA / cm2 y un voltaje de circuito abierto (Voc) de 875 mV y se calculó un factor de llenado (FF) de 0.37 para las celdas solares de perovskita sin una capa de BCP lo que conduce a una eficiencia de conversión de energía (PCE) de 5.32%. Para celdas solares de perovskita que emplean capas de BCP con concentración de 0.5 mg/ml y centrifugado a 4000 rpm el valor de Jsc fue de 19 mA / cm2, se lograron Voc de 990 mV y se calculó un FF de 0.5, lo que lleva a un PCE del 9,4%. Se observó que el uso de una capa de BCP con concentración optimizada puede conducir a un rendimiento mejorado del dispositivo con un aumento del 77% en PCE en el aire ambiente, en condiciones de alta humedad, para celdas solares de perovskita de estructura plana en la configuración de ITO / NiOx / MAPbI3 / PCBM / BCP / Ag.


Sign in / Sign up

Export Citation Format

Share Document