Novel form-stable phase change material composite for high-efficiency room temperature control

2017 ◽  
Vol 170 ◽  
pp. 13-20 ◽  
Author(s):  
Andrey A. Chernousov ◽  
Ben Y.B. Chan
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1395
Author(s):  
Angel Serrano ◽  
Ana M. Borreguero ◽  
Isabel Iglesias ◽  
Anselmo Acosta ◽  
Juan F. Rodríguez ◽  
...  

A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation time, obtaining form-stable PCMs with PEG-SiO2 contents within 15–110 wt.%. Kinetic adsorption curves of the sol into bricks having different porosities as well as maximum adsorption capacities were obtained. The effective diffusion coefficients (Deff) were estimated by means of Fick’s second law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor temperature during an entire operational day


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 44903-44911
Author(s):  
Suhong Zhu ◽  
Tao Ji ◽  
Dongyu Niu ◽  
Zhengxian Yang

As a new performance-enhancing additive, PEG/MMO PCM is expected to be effective in regulating extreme temperature and resisting UV aging of bitumen binder and thus could significantly extend the service life of bitumen pavement.


2021 ◽  
pp. 103592
Author(s):  
Tongyan Ren ◽  
Guotong Du ◽  
Qiyu Li ◽  
Yuechuan Wang ◽  
Xiaowei Fu ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5343
Author(s):  
Miroslava Kavgic ◽  
Yaser Abdellatef

Phase change material (PCM)-enhanced building envelopes can control indoor temperatures and save energy. However, PCM needs to undergo a phase change transition from solid to liquid and back to be fully effective. Furthermore, most previous research integrated PCM with high embodied energy materials. This study aims to advance the existing research on integrating PCM into carbon-negative wall assemblies composed of hempcrete and applying temperature control strategies to improve wall systems’ performance while considering the hysteresis phenomenon. Four hempcrete and hempcrete-PCM (HPCM) wall design configurations were simulated and compared under different control strategies designed to reduce energy demand while enhancing the phase change transition of the microencapsulated PCM. The HPCM wall types outperformed the hempcrete wall assembly through heating (~3–7%) and cooling (~7.8–20.7%) energy savings. HPCM walls also maintained higher wall surface temperatures during the coldest days, lower during the warmest days, and within a tighter range than hempcrete assembly, thus improving the thermal comfort. However, the results also show that the optimal performance of thermal energy storage materials requires temperature controls that facilitate their charge and discharge. Hence, applied control strategies reduced heating and cooling energy demand in the range of ~4.4–21.5% and ~14.5–55%, respectively.


Sign in / Sign up

Export Citation Format

Share Document