How to incentivise hydrogen energy technologies for net zero: Whole-system value chain optimisation of policy scenarios

2021 ◽  
Vol 27 ◽  
pp. 1215-1238
Author(s):  
Christopher J. Quarton ◽  
Sheila Samsatli
2020 ◽  
Vol 92 (8) ◽  
pp. 1305-1320 ◽  
Author(s):  
Yulia H. Budnikova ◽  
Vera V. Khrizanforova

AbstractNowadays, hydrogen has become not only an extremely important chemical product but also a promising clean energy carrier for replacing fossil fuels. Production of molecular H2 through electrochemical hydrogen evolution reactions is crucial for the development of clean-energy technologies. The development of economically viable and efficient H2 production/oxidation catalysts is a key step in the creation of H2-based renewable energy infrastructure. Intrinsic limitations of both natural enzymes and synthetic materials have led researchers to explore enzyme-induced catalysts to realize a high current density at a low overpotential. In recent times, highly active widespread numerous electrocatalysts, both homogeneous or heterogeneous (immobilized on the electrode), such as transition metal complexes, heteroatom- or metal-doped nanocarbons, metal-organic frameworks, and other metal derivatives (calix [4] resorcinols, pectates, etc.), which are, to one extent or another, structural or functional analogs of hydrogenases, have been extensively studied as alternatives for Pt-based catalysts, demonstrating prospects for the development of a “hydrogen economy”. This mini-review generalizes some achievements in the field of development of new electrocatalysts for H2 production/oxidation and their application for fuel cells, mainly focuses on the consideration of the catalytic activity of M[P2N2]22+ (M = Ni, Fe) complexes and other nickel structures which have been recently obtained.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nana O. Bonsu

AbstractThe UK Plan for a Green Industrial Revolution aims to ban petrol and diesel cars by 2030 and transition to electric vehicles (EVs). Current business models for EV ownership and the transition to net-net zero emissions are not working for households in the lowest income brackets. However, low-income communities bear the brunt of environmental and health illnesses from transport air pollution caused by those living in relatively more affluent areas. Importantly, achieving equitable EV ownership amongst low-and middle-income households and driving policy goals towards environmental injustice of air pollution and net-zero emissions would require responsible and circular business models. Such consumer-focused business models address an EV subscription via low-income household tax rebates, an EV battery value-chain circularity, locally-driven new battery technological development, including EV manufacturing tax rebates and socially innovative mechanisms. This brief communication emphasises that consumer-led business models following net-zero emission vehicles shift and decisions must ensure positive-sum outcomes. And must focus not only on profits and competitiveness but also on people, planet, prosperity and partnership co-benefits.


2008 ◽  
Vol 33 (3) ◽  
pp. 88-95
Author(s):  
Masa Noguchi

In response to the growing demand for zero-energy housing, today's home needs not only to be energy-efficient, but also to provide part of its own energy requirements. The energy efficiency may be improved by applying high thermal performance building envelope and passive energy and environmental systems to housing. Micro-power can be generated through the use of renewable energy technologies. This paper is aimed at providing a comprehensive guideline on the design techniques and approaches to the delivery of net zero-energy healthy housing in view of the ÉcoTerra house, which won the Canadian federal government's EQuilibrium sustainable housing competition. The house was built in Eastman in the province of Quebec and it is currently open to the general public in order to sharpen the consumers' awareness of commercially available net zero-energy healthy housing today.


2017 ◽  
pp. 121-138 ◽  
Author(s):  
Antonella Petrillo ◽  
Fabio De Felice ◽  
Elio Jannelli ◽  
Mariagiovanna Minutillo

2021 ◽  
Vol 289 ◽  
pp. 01005
Author(s):  
A.S. Grachev

This article discusses the prospects for the use of hydrogen technologies in conjunction with renewable energy sources. A sim plified model of the power system of an isolated consumer using hydrogen technologies has been compiled. An experimental calculation of the electrical part of the system has been carried out. Based on the results obtained, conclusions are drawn about the further improvement of this model.


Sign in / Sign up

Export Citation Format

Share Document