Characterization of the failure process in composite materials by the Fiber Bundle Model

2014 ◽  
Vol 71 ◽  
pp. 30-37 ◽  
Author(s):  
A. Hader ◽  
I. Achik ◽  
A. Lahyani ◽  
K. Sbiaai ◽  
Y. Boughaleb
2020 ◽  
Vol 92 (1) ◽  
pp. 10401
Author(s):  
Siham Boufass ◽  
Ahmed Hader ◽  
Mohammed Tanasehte ◽  
Hicham Sbiaai ◽  
Imad Achik ◽  
...  

In this paper, the fiber energy in composite materials, subject to an external constant load, is studied. The investigation is done in the framework of fiber bundle model with randomly oriented fibers. The charge transfer is done only between neighboring close fibers according to the local load sharing. During the breaking process, the fibers expand, increasing their elastic energy, but when the fiber breaks, it loses its link with its neighboring fibers reducing the cohesive energy of the materials. The results show that the material energy presents one maximal peak at cross over time which decreases linearly with the applied force and scales with the lifetime of the material. However, the temperature does not have a remarkable effect on the material energy variation. In addition, the link density fiber decreases exponentially with time. The characteristic time of the obtained profile decreases with the applied force. Moreover, this density decreases with applied forces according to the Lorentz law with a remarkable change at critical force value.


2016 ◽  
Vol 26 (1) ◽  
pp. 147-161 ◽  
Author(s):  
Sohan Kale ◽  
Martin Ostoja–Starzewski

The damage evolution in quasi-brittle materials is inherently stochastic due to the presence of strong disorder in the form of heterogeneities, voids, and microcracks. The final macroscopic failure is foreshadowed by accumulation of a significant amount of distributed damage that results in precursory events observed as avalanches in experiments and simulations. Simulations on spring lattice models of disordered media have been widely used to understand the collective nature of the quasi-brittle material failure process. In this study, we use the jump Markov process to model stochastic damage evolution, which is informed by the avalanche size distributions for a given material. The jump Markov process is defined based on the probability distributions of the jump sizes, the wait-time between consecutive jumps, and the failure strength. The fiber bundle model is used as an example to obtain the required inputs and test the viability of the proposed approach. The stochasticity and size-dependence of the damage evolution process is inherently captured through the inputs provided for the jump Markov process. The avalanche and strength distributions are used to describe the effect of microscopic information present in the form of disorder, on the macroscopic damage evolution behavior.


2020 ◽  
Vol 30 ◽  
pp. 923-927
Author(s):  
M. Tanasehte ◽  
A. Hader ◽  
M. Elkhal ◽  
Y. Hariti ◽  
H. Sbiaai ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahmed Hader ◽  
Hicham Sbiaai ◽  
Mohammed Tanasehte ◽  
Layla Amallah ◽  
Yahia Boughaleb

PurposeThe fibers are loaded by the cosine component of the external load, when a fiber fails, and due to the local load-sharing nature, its force is shared by surviving neighboring fibers. The results show that the system presents a greater resistance and toughness toward the applied load compared to the classical one.Design/methodology/approachIn this paper, the authors adopt the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load to study scaling law in failure process of composite materials with randomly oriented fibers. The model is based on the fiber bundle model where the fibers are randomly oriented. The system is different to the classical one where the fibers are arranged in parallel with the applied load direction.FindingsThe evolution time of the fraction of broken fiber is described by an exponential law with two characteristic times. The latter decrease linearly and exponentially respectively with both applied load and temperature.Originality/valueScaling behavior of the broken fiber numbers with the size system shows that the system exhibits a scaling law of Family–Vicsek model with universal exponents.


Sign in / Sign up

Export Citation Format

Share Document