Repercussion of growth morphology on sodium and potassium tantalates for hydrogen production

2021 ◽  
pp. 114622
Author(s):  
Kalaiselvi C.R ◽  
Senthil T.S ◽  
Kalpana S ◽  
Misook Kang
2021 ◽  
Vol 937 (4) ◽  
pp. 042042
Author(s):  
A Abdurakhmanov ◽  
Yu Sabirov ◽  
S Makhmudov ◽  
D Pulatova ◽  
T Jamolov ◽  
...  

Abstract Our paper presents a method for producing green hydrogen by electrolysis of water using solar energy. The required electrical energy for electrolysis of water is obtained from the radiant energy of the sun using a 10 kW photovoltaic station, assembled from individual photovoltaic panels with dimensions 1x2 m in the amount of 30 pcs. FES consists of 30 modules and each of them is checked with an infrared camera during operation in order to check the operability of each element. Comparative characteristics of the current of formation in the electrolyzer of aqueous solutions of sodium and potassium alkalis are given.


2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


Sign in / Sign up

Export Citation Format

Share Document