Application of FT-IR for in situ investigation of high temperature electrode reactions

2005 ◽  
Vol 176 (31-34) ◽  
pp. 2399-2403 ◽  
Author(s):  
Takuya Murai ◽  
Keiji Yashiro ◽  
Atsushi Kaimai ◽  
Takanori Otake ◽  
Hiroshige Matsumoto ◽  
...  
2019 ◽  
Vol 9 (7) ◽  
pp. 1310 ◽  
Author(s):  
Kerstin Hauke ◽  
Johannes Kehren ◽  
Nadine Böhme ◽  
Sinje Zimmer ◽  
Thorsten Geisler

In the last decades, Raman spectroscopy has become an important tool to identify and investigate minerals, gases, glasses, and organic material at room temperature. In combination with high-temperature and high-pressure devices, however, the in situ investigation of mineral transformation reactions and their kinetics is nowadays also possible. Here, we present a novel approach to in situ studies for the sintering process of silicate ceramics by hyperspectral Raman imaging. This imaging technique allows studying high-temperature solid-solid and/or solid-melt reactions spatially and temporally resolved, and opens up new avenues to study and visualize high-temperature sintering processes in multi-component systems. After describing in detail the methodology, the results of three application examples are presented and discussed. These experiments demonstrate the power of hyperspectral Raman imaging for in situ studies of the mechanism(s) of solid-solid or solid-melt reactions at high-temperature with a micrometer-scale resolution as well as to gain kinetic information from the temperature- and time-dependent growth and breakdown of minerals during isothermal or isochronal sintering.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 555 ◽  
Author(s):  
Hadjer Ouaddah ◽  
Maike Becker ◽  
Thècle Riberi-Béridot ◽  
Maria Tsoutsouva ◽  
Vasiliki Stamelou ◽  
...  

To control the final grain structure and the density of structural crystalline defects in silicon (Si) ingots is still a main issue for Si used in photovoltaic solar cells. It concerns both innovative and conventional fabrication processes. Due to the dynamic essence of the phenomena and to the coupling of mechanisms at different scales, the post-mortem study of the solidified ingots gives limited results. In the past years, we developed an original system named GaTSBI for Growth at high Temperature observed by Synchrotron Beam Imaging, to investigate in situ the mechanisms involved during solidification. X-ray radiography and X-ray Bragg diffraction imaging (topography) are combined and implemented together with the running of a high temperature (up to 2073 K) solidification furnace. The experiments are conducted at the European Synchrotron Radiation Facility (ESRF). Both imaging techniques provide in situ and real time information during growth on the morphology and kinetics of the solid/liquid (S/L) interface, as well as on the deformation of the crystal structure and on the dynamics of structural defects including dislocations. Essential features of twinning, grain nucleation, competition, strain building, and dislocations during Si solidification are characterized and allow a deeper understanding of the fundamental mechanisms of its growth.


2009 ◽  
Vol 11 (17) ◽  
pp. 3138 ◽  
Author(s):  
Dmytro Sugak ◽  
Yaroslav Zhydachevskii ◽  
Yuriy Sugak ◽  
Oleg Buryy ◽  
Sergii Ubizskii ◽  
...  

2012 ◽  
Vol 18 (S2) ◽  
pp. 1170-1171
Author(s):  
P. Abellan ◽  
S. Mehraeen ◽  
P. Xu ◽  
J.T. McKeown ◽  
P.V. Deshmukh ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2010 ◽  
Vol 72 ◽  
pp. 249-254
Author(s):  
Aliye Arabaci ◽  
Nuri Solak

Doped ceria-based (DC) materials have recently been considered as the most promising solid electrolytes for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Doped ceria is usually prepared via thermal decomposition of its water soluble salts, especially, acetates and nitrates. The properties of the obtained final product directly influenced by the starting material and the decomposition products. Therefore, it is crucial to understand the decomposition steps and intermediate products. Number of experimental work have been reported using various <em>in-situ</em> and <em>ex-situ</em> techniques such as thermogravimetry with mass spectrometry (TG/DTA-MS), X-ray diffraction with differential scanning calorimeter (XRD-DSC). However, the available literature data is limited and not reasonably in agreement with each other. High Temperature FT-IR spectroscopy, TG/DTA-MS, XRD, techniques were used and results are compared with literature. A good agreement between the thermal analyses and HT-FTIR results were obtained. Possible decomposition mechanism is discussed.


1984 ◽  
Vol 32 ◽  
Author(s):  
David M. Haaland ◽  
C. Jeffrey Brinker

ABSTRACTA high-temperature infrared cell was developed to study the gel-to-glass conversion of sol-gel-derived thin films. FT-IR spectra of matched thin-film borosilicate sol-gel samples were taken as the samples were heated at 100°C intervals to 700°C in either air or ammonia. The gels were converted to oxide and oxynitride glasses, respectively, by these heat treatments. The gel-to-glass conversion could be followed and compared for these two treatments by monitoring changes in the vibrational bands present in the spectra. Comparisons between the infrared spectra of NH3-treated and air-treated films heated above 500°C reveal the appearance of new B-N bonds at the expense of B-O-Si bonds for the NH3-fired films. These spectra also exhibit changes which may indicate the formation of Si-N bonds. Thus, ammonolysis reactions can result in thin-film oxynitride glass formation at relatively low temperatures.


Sign in / Sign up

Export Citation Format

Share Document