scholarly journals Myf5-Positive Satellite Cells Contribute to Pax7-Dependent Long-Term Maintenance of Adult Muscle Stem Cells

2013 ◽  
Vol 13 (5) ◽  
pp. 590-601 ◽  
Author(s):  
Stefan Günther ◽  
Johnny Kim ◽  
Sawa Kostin ◽  
Christoph Lepper ◽  
Chen-Ming Fan ◽  
...  
2013 ◽  
Vol 13 (6) ◽  
pp. 769
Author(s):  
Stefan Günther ◽  
Johnny Kim ◽  
Sawa Kostin ◽  
Christoph Lepper ◽  
Chen-Ming Fan ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Dhananjay Chaturvedi ◽  
Heinrich Reichert ◽  
Rajesh D Gunage ◽  
K VijayRaghavan

Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly, however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study, we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta-dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells.


2016 ◽  
Author(s):  
Dhananjay Chaturvedi ◽  
Heinrich Reichert ◽  
Rajesh Gunage ◽  
K. VijayRaghavan

AbstractWork on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells located superficially and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1- cells and engage in Notch-Delta dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells.


2008 ◽  
Vol 322 (2) ◽  
pp. 406-414 ◽  
Author(s):  
Eric Meadows ◽  
Jang-Hyeon Cho ◽  
Jesse M. Flynn ◽  
William H. Klein

2017 ◽  
Vol 12 (9) ◽  
pp. 1890-1900 ◽  
Author(s):  
Xiaoping Bao ◽  
Xiaojun Lian ◽  
Tongcheng Qian ◽  
Vijesh J Bhute ◽  
Tianxiao Han ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sumiaki Fukuda ◽  
Akihiro Kaneshige ◽  
Takayuki Kaji ◽  
Yu-taro Noguchi ◽  
Yusei Takemoto ◽  
...  

In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aurore L'honoré ◽  
Pierre-Henri Commère ◽  
Elisa Negroni ◽  
Giorgia Pallafacchina ◽  
Bertrand Friguet ◽  
...  

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.


2014 ◽  
Vol 2 (4) ◽  
pp. 414-426 ◽  
Author(s):  
Suchitra D. Gopinath ◽  
Ashley E. Webb ◽  
Anne Brunet ◽  
Thomas A. Rando

2015 ◽  
Vol 210 (5) ◽  
pp. 717-726 ◽  
Author(s):  
Alice Parisi ◽  
Floriane Lacour ◽  
Lorenzo Giordani ◽  
Sabine Colnot ◽  
Pascal Maire ◽  
...  

The tumor suppressor adenomatous polyposis coli (APC) is a crucial regulator of many stem cell types. In constantly cycling stem cells of fast turnover tissues, APC loss results in the constitutive activation of a Wnt target gene program that massively increases proliferation and leads to malignant transformation. However, APC function in skeletal muscle, a tissue with a low turnover rate, has never been investigated. Here we show that conditional genetic disruption of APC in adult muscle stem cells results in the abrogation of adult muscle regenerative potential. We demonstrate that APC removal in adult muscle stem cells abolishes cell cycle entry and leads to cell death. By using double knockout strategies, we further prove that this phenotype is attributable to overactivation of β-catenin signaling. Our results demonstrate that in muscle stem cells, APC dampens canonical Wnt signaling to allow cell cycle progression and radically diverge from previous observations concerning stem cells in actively self-renewing tissues.


Sign in / Sign up

Export Citation Format

Share Document