Maize (Zea mays L.) yield response to nitrogen as influenced by spatio-temporal variations of soil–water-topography dynamics

2015 ◽  
Vol 146 ◽  
pp. 174-183 ◽  
Author(s):  
Qing Zhu ◽  
John P. Schmidt ◽  
Ray B. Bryant
2019 ◽  
Vol 99 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Amy A. Pawlick ◽  
Claudia Wagner-Riddle ◽  
Gary W. Parkin ◽  
Aaron A. Berg

Agricultural ecosystems are one of the largest global contributors to nitrate (NO3−) contamination of surface- and groundwater through fertilizer application. Improved fertilizer practices are needed to manage crop nutrient supply in corn (Zea mays L.) while minimizing impacts to clean water reserves. The goal of this study was to compare current nitrogen (N) fertilizer practices (urea at planting) with “packages” of improved management practices (a combination of right timing and product) that farmers potentially use. We conducted measurements in a continuous corn system from November 2015 to May 2017 at a large field scale (four 4 ha plots). Nitrate concentration was measured below the root zone and drainage estimated using a soil water budget approach in which evapotranspiration was measured using the eddy covariance method. The objective was to compare NO3−-N leaching from fields receiving urea vs. urea + combination of nitrification and urease inhibitors (NUI) fertilizer applications at planting, urea–ammonium nitrate (UAN) vs. UAN + NUI applied at sidedress, and a combination of these practices: urea + NUI at planting vs. UAN at sidedress. Drainage was only significant in the non-growing season. Neither fertilizer products applied with NUI at planting or sidedress proved to significantly reduce NO3−-N leaching. The combination of delaying fertilization to sidedress and applying UAN significantly reduced the soil water NO3−-N concentration compared with urea + NUI at planting (mean of 5.2 vs. 6.7 mg L−1) but only in 2015–2016. Based on these results, applying UAN at sidedress is recommended, although additional study years are needed to confirm those results.


2019 ◽  
Vol 50 (3) ◽  
pp. 925-944 ◽  
Author(s):  
Peng Wang ◽  
Licheng Shen ◽  
Xiaohong Chen ◽  
Zhijun Wang ◽  
Xuan Liang ◽  
...  

Abstract Soil water plays a crucial role in biogeochemical processes within karst ecosystems. However, geochemical variations of soil waters under different land covers and the related karst critical zone processes are still unclear. In this study, five land covers, including grassland, dry land, shrub land, reforestation land, and bamboo land in the Qingmuguan karst area of Chongqing Municipality, Southwest (SW) China were investigated in order to better understand the spatio-temporal variations of soil water geochemistry and its controlling mechanisms. The hydrochemistry of soil water and stable carbon isotopic compositions of dissolved inorganic carbon (δ13CDIC) in soil water were analyzed by a semi-monthly sampling strategy. The results show that there is remarkable spatio-temporal variation in the hydrochemistry and δ13CDIC of soil waters under different land covers in the studied area. Soil waters collected from shrub, dry, and afforestation lands have higher total dissolved solids (TDS), Ca2+, and HCO3− concentrations and heavier δ13CDIC, which is probably associated with the stronger carbonate dissolution caused by higher soil CO2 and carbonate content in soils under these land covers. However, lower TDS, Ca2+, and HCO3− concentrations as well as δ13CDIC values but higher SO42− concentrations are found in soil waters collected from bamboo land and grassland. The reason is that higher gypsum dissolution or oxidation of sulfide minerals and less soil CO2 input occurs in soils under these two land covers. Under the shrub, dry, and afforestation lands, higher concentrations of Ca2+ and HCO3− in soil waters occur in rainy seasons than in dry seasons, which are probably linked to higher CO2 input due to stronger microbial activities and root respiration in the wet summer seasons. In addition, seasonal variations of NO3− concentrations in soil waters from the dry land are observed, and much higher NO3− concentration occurs in the rainy seasons than that in the dry seasons, which suggest that the agricultural fertilization may lead to high NO3− in soil water. On the vertical soil profile, except for the bamboo land, soil waters under different land covers commonly show an increasing trend of main ion concentrations with the increase of depth. This vertical variation of hydrochemistry and δ13CDIC values in soil waters is primarily controlled by the intensity of carbonate dissolution related to carbonate content in soils and soil CO2 production. The soil waters under different land covers have great variations in δ13CDIC values which ranged from −20.68‰ to −6.90‰. Also, the [HCO3−]/([Ca2+] + [Mg2+]), [NO3−]/[HCO3−], and [SO42−]/([Ca2+] + [Mg2+]) molar ratios in soil waters show a large amplitude of variation. This suggested that carbonic acids could not be a unique dissolving agent and sulfuric/nitric acids may play a role in the weathering of carbonate in the Qingmuguan karst area.


1988 ◽  
Vol 68 (3) ◽  
pp. 597-606 ◽  
Author(s):  
R. CEULEMANS ◽  
I. IMPENS ◽  
M. C. LAKER ◽  
F. M. G. VAN ASSCHE ◽  
R. MOTTRAM

With the objective to evaluate and compare different physiological plant parameters as indicators of water stress, net CO2 exchange rate (NCER), leaf temperature, predawn and daytime leaf water potential were monitored diurnally on last fully expanded leaves of corn (Zea mays L.) plants under two different soil water treatments (stressed and nonstressed) during a 10-d period at anthesis in a semi-arid region in South Africa. Profile available water capacity (PAWC) was used to express the soil water contents during the experiments. A significant decrease in NCER was noticed as soon as 30% of PAWC was extracted, i.e. 2 or 3 d after irrigation. Although the results were limited to a short, well-defined measuring period, NCER, and especially NCER at noon, seemed to be a more sensitive and more reliable indicator of corn water stress than, for example, predawn or daytime leaf water potential, at least under the conditions studied here. This reduction in NCER might have a significant impact on total biomass, rooting density, flower and ear formation.Key words: Corn, irrigation scheduling, photosynthesis, leaf water potential, profile available water capacity, soil water content


Sign in / Sign up

Export Citation Format

Share Document