Assessment of nitrification and urease inhibitors on nitrate leaching in corn (Zea mays L.)

2019 ◽  
Vol 99 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Amy A. Pawlick ◽  
Claudia Wagner-Riddle ◽  
Gary W. Parkin ◽  
Aaron A. Berg

Agricultural ecosystems are one of the largest global contributors to nitrate (NO3−) contamination of surface- and groundwater through fertilizer application. Improved fertilizer practices are needed to manage crop nutrient supply in corn (Zea mays L.) while minimizing impacts to clean water reserves. The goal of this study was to compare current nitrogen (N) fertilizer practices (urea at planting) with “packages” of improved management practices (a combination of right timing and product) that farmers potentially use. We conducted measurements in a continuous corn system from November 2015 to May 2017 at a large field scale (four 4 ha plots). Nitrate concentration was measured below the root zone and drainage estimated using a soil water budget approach in which evapotranspiration was measured using the eddy covariance method. The objective was to compare NO3−-N leaching from fields receiving urea vs. urea + combination of nitrification and urease inhibitors (NUI) fertilizer applications at planting, urea–ammonium nitrate (UAN) vs. UAN + NUI applied at sidedress, and a combination of these practices: urea + NUI at planting vs. UAN at sidedress. Drainage was only significant in the non-growing season. Neither fertilizer products applied with NUI at planting or sidedress proved to significantly reduce NO3−-N leaching. The combination of delaying fertilization to sidedress and applying UAN significantly reduced the soil water NO3−-N concentration compared with urea + NUI at planting (mean of 5.2 vs. 6.7 mg L−1) but only in 2015–2016. Based on these results, applying UAN at sidedress is recommended, although additional study years are needed to confirm those results.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498c-498
Author(s):  
A. Fares ◽  
A.K. Alva ◽  
S. Paramasivam

Water and nitrogen (N) are important inputs for most crop production. The main objectives of nitrogen best management practices (NBMP) are to improve N and water management to maximize the uptake efficiency and minimize the leaching losses. This require a complete understanding of fate of N and water mass balance within and below the root zone of the crop in question. The fate of nitrogen applied for citrus production in sandy soils (>95% sand) was simulated using a mathematical model LEACHM (Leaching Estimation And Chemistry Model). Nitrogen removal in harvested fruits and storage in the tree accounted the major portion of the applied N. Nitrogen volatilization mainly as ammonia and N leaching below the root zone were the next two major components of the N mass balance. A proper irrigation scheduling based on continuous monitoring of the soil water content in the rooting was used as a part of the NBMP. More than 50% of the total annual leached water below the root zone was predicted to occur in the the rainy season. Since this would contribute to nitrate leaching, it is recomended to avoid N application during the rainy season.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06074
Author(s):  
Workineh Ejigu ◽  
Yihenew G.Selassie ◽  
Eyasu Elias ◽  
Matebe Damte

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1543
Author(s):  
Piotr Szulc ◽  
Jan Bocianowski ◽  
Kamila Nowosad ◽  
Henryk Bujak ◽  
Waldemar Zielewicz ◽  
...  

Field experiments were carried out at the Department of Agronomy of the Poznań University of Life Sciences to determine the effect of the depth of NP fertilization placement in maize cultivation on the number of plants after emergence. The adopted assumptions were verified based on a six-year field experiment involving four depths of NP fertilizer application (A1—0 cm (broadcast), A2—5 cm (in rows), A3—10 cm (in rows), A4—15 cm (in rows)). The objective of this study was to assess NP fertilizer placement depth, in conjunction with the year, on the number of maize (Zea mays L.) plants after emergence using the additive main effects and multiplicative interaction model. The number of plants after emergence decreased with the depth of NP fertilization in the soil profile, confirming the high dependence of maize on phosphorus and nitrogen availability, as well as greater subsoil loosening during placement. The number of plants after emergence for the experimental NP fertilizer placement depths varied from 7.237 to 8.201 plant m−2 during six years, with an average of 7.687 plant m−2. The 61.51% of variation in the total number of plants after emergence was explained by years differences, 23.21% by differences between NP fertilizer placement depths and 4.68% by NP fertilizer placement depths by years interaction. NP fertilizer placement depth 10 cm (A3) was the most stable (ASV = 1.361) in terms of the number of plants after emergence among the studied NP fertilizer placement depths. Assuming that the maize kernels are placed in the soil at a depth of approx. 5 cm, the fertilizer during starter fertilization should be placed 5 cm to the side and below the kernel. Deeper NP fertilizer application in maize cultivation is not recommended. The condition for the use of agriculture progress, represented by localized fertilization, is the simultaneous recognition of the aspects of yielding physiology of new maize varieties and the assessment of their reaction to deeper seed placement during sowing.


2021 ◽  
Vol 16 (2) ◽  
pp. 215-218
Author(s):  
Banashri Lodh ◽  
S.N. Jena ◽  
R.K. Paikaray ◽  
Manoranjan Satapathy ◽  
Bishnupriya Patra ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2005
Author(s):  
Jacek Długosz ◽  
Anna Piotrowska-Długosz ◽  
Karol Kotwica ◽  
Ewelina Przybyszewska

The application of various conditioners in agriculture is one of the management practices used to improve soil quality and plant growth and development. The aim of this study was to assess the effect of a multi-component conditioner on the selected soil properties and maize (Zea mays L.) growth and yield. The effect of a conditioner on a set of soil properties and maize growth and yield was studied in one-year experiments carried out at three study sites, which were under a conventional tillage system. All of the study sites were located on farms in three geographic mezoregions in the Kuyavian-Pomeranian Region (Midwestern Poland). The studied soils were Haplic Luvisol (Janocin and Kobylnica) and Albic Luvisols (Krukówko) that were composed of sandy loam. A one-way analysis of variance (ANOVA) was used to determine the effect of a conditioner Solactiv on the soil and plant properties. The conditioner significantly affected the soil enzyme activities such as dehydrogenase (DHA), fluorescein sodium salt hydrolysis level (FDAH) and carboxymethylcellulose cellulase (CMC—cellulase); wherein the last one increased by about 16–20%. The application of Solactiv also increased the available K content (about 11%) but not the content of the microbial biomass C and N. Total porosity (TP), which was significantly higher in the soil treated with conditioner than in the control soils, increased the available water capacity (AWC) (about 2.2%). The higher AWC in the treated soil indicated the greater contribution of the mesopores in the TP (about 4%). A significantly higher readily available water capacity (RAWC) and small pores available water capacity (SAWC) was determined in the treated soils compared to the controls. Of the plant properties, only plant height, fresh cob biomass (BBCH 87–89) and fresh plant biomass (BBCH 84–85) were significantly increased by the conditioner. The application of Solactiv is considered to be a promising approach for developing sustainable agriculture by improving the soil’s biological activity and water-related properties.


2016 ◽  
Vol 62 (No. 3) ◽  
pp. 135-142 ◽  
Author(s):  
P. Szulc ◽  
H. Waligóra ◽  
T. Michalski ◽  
M. Rybus-Zając ◽  
P. Olejarski

Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 276 ◽  
Author(s):  
Giacomo Betti ◽  
Cameron D. Grant ◽  
Robert S. Murray ◽  
G. Jock Churchman

Clay delving in strongly texture-contrast soils brings up subsoil clay in clumps ranging from large clods to tiny aggregates depending on the equipment used and the extent of secondary cultivation. Clay delving usually increases crop yields but not universally; this has generated questions about best management practices. It was postulated that the size distribution of the subsoil clumps created by delving might influence soil-water availability (and hence crop yield) because, although the clay increases water retention in the root-zone, it can also cause poor soil aeration, high soil strength and greatly reduced hydraulic conductivity. We prepared laboratory mixtures of sand and clay-rich subsoil in amounts considered practical (10% and 20% by weight) and excessive (40% and 60% by weight) with different subsoil clod sizes (<2, 6, 20 and 45 mm), for which we measured water retention, soil resistance, and saturated hydraulic conductivity. We calculated soil water availability by traditional means (plant-available water, PAW) and by the integral water capacity (IWC). We found that PAW increased with subsoil clay, particularly when smaller aggregates were used (≤6 mm). However, when the potential restrictions on PAW were taken into account, the benefits of adding clay reached a peak at ~40%, beyond which IWC declined towards that of pure subsoil clay. Furthermore, the smaller the aggregates the less effective they were at increasing IWC, particularly in the practical range of application rates (<20% by weight). We conclude that excessive post-delving cultivation may not be warranted and may explain some of the variability found in crop yields after delving.


2018 ◽  
Vol 55 (2) ◽  
pp. 354
Author(s):  
M Y Ullasa ◽  
G K Girijesh ◽  
M Dinesh Kumar ◽  
H M Chidanandappa

Sign in / Sign up

Export Citation Format

Share Document