Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil

2021 ◽  
pp. 104992
Author(s):  
Jun Zhang ◽  
James E. Amonette ◽  
Markus Flury
1998 ◽  
Vol 23 (1) ◽  
pp. 353-354
Author(s):  
P. R. Heller ◽  
R. Walker

Abstract The fairway located in Lancaster County, PA, consisted primarily of perennial ryegrass (80%) and creeping bentgrass (50%). Treatment plots were 7 X 6 ft, arranged in a RCB design and replicated 3 times. Liquid formulations were applied by using a CO2 sprayer with 4 8004VS TeeJet nozzles mounted on a 6-ft boom, operating at 28 psi, and delivering 4 gal/1000 ft2. At the 1st treatment time (4 Jun), the following soil and environmental conditions existed: air temperature, 68° F; soil temperature at 1-inch depth, 64° F; soil temperature at 2-inch depth, 62° F; RH, 67%; amount of thatch, 0.125 inch; soil type, silt loam; soil particle size analysis: 30.7% sand, 61.9% silt, 7.4% clay; soil moisture (oven baked), 28.3%; organic matter, 5.6%; water pH, 7.0; soil pH, 6.1; time of treatment, mid-morning; and overcast skies. The experimental area was irrigated with 0.25 inch of water 3 fir after treatment. At the 2nd treatment time (15 Jul), the following soil and environmental conditions existed: air temperature, 78° F; soil temperature at 1-inch depth, 74° F; soil temperature at 2-inch depth, 75° F; RH, 75%; amount of thatch, 0.0625-0.125 inch; soil type; silt loam; soil particle size analysis: 30.7% sand, 61.9% silt, 7.4% clay; soil moisture (oven baked), 37.7%; organic matter, 7.2%; water pH, 7.0; soil pH, 5.9; time of treatment, mid-morning; and cloudy skies. The experimental area was irrigated with 0.25 inch of water immediately after product dried. A the 3rd treatment time (12 Aug), the following soil and environmental conditions existed: air temperature, 65° F; soil temperature at 1-inch depth, 69° F; soil temperature at 2-inch depth, 69° F; RH, 90%; amount of thatch, 0.0625-0.125 inch; soil type, silt loam; soil particle size analysis: 30.7% sand, 61.9% silt, 7.4% clay; soil moisture (oven baked), 40.0%; organic matter, 5.7%; water pH, 7.0; soil pH, 6.5; time of treatment, early morning; and cloudy skies. The experimental area was irrigated with 0.25 inch of water immediately after product dried. Post-treatment counts were made on 29 Aug. The total number of green of June beetle larvae flushed to the surface following an application of Sevin SL over a 24-hr observation interval was recorded from each replicate.


2021 ◽  
Vol 83 (6) ◽  
pp. 117-124
Author(s):  
Sunny Goh Eng Giap ◽  
Rudiyanto - ◽  
Zakiyyah Jasni ◽  
Mohammad Fadhli Ahmad

The updated Terengganu soil series has been made known to the public in 2018 by the Department of Agriculture, Malaysia. One of the most important physical aspects not quantify is the parameter relating to soil’s ability to contain water and allow water infiltration. This information is necessary to help farmers to know the soil suitability characteristics. In the current study, we retrieve the soil particle size of the soil series for further investigation. A pedotransfer function was used to estimate the soil water retention. The properties were then used to estimate the field capacity (FC), permanent wilting point (PWP), and the plant available water (PAW). In this study, we found twelve soil series in Terengganu state. The soil series were categorized into clay, sand, loamy sand, silty clay loam, and clay loam. Batu Hitam, Tasik, Lubok Kiat, Kampong Pusu, Tok Yong, Jerangau, and Tersat Series were found as clay soil. Jambu and Rhu Tapai Series as sand soil. Rudua, Gondang, and Kuala Brang Series corresponded to clay loam, silty clay loam, and  loamy sand. Among the soil series, Gondang Series appeared to be the most preferred soil for plantation due to its ability to give the highest plant available water, a lower water infiltration duration than clay, and it required lesser water for irrigation than the clay soil.


2014 ◽  
Vol 11 (11) ◽  
pp. 3083-3093 ◽  
Author(s):  
M. J. B. Zeppel ◽  
J. V. Wilks ◽  
J. D. Lewis

Abstract. The global hydrological cycle is predicted to become more intense in future climates, with both larger precipitation events and longer times between events in some regions. Redistribution of precipitation may occur both within and across seasons, and the resulting wide fluctuations in soil water content (SWC) may dramatically affect plants. Though these responses remain poorly understood, recent research in this emerging field suggests the effects of redistributed precipitation may differ from predictions based on previous drought studies. We review available studies on both extreme precipitation (redistribution within seasons) and seasonal changes in precipitation (redistribution across seasons) on grasslands and forests. Extreme precipitation differentially affected above-ground net primary productivity (ANPP), depending on whether extreme precipitation led to increased or decreased SWC, which differed based on the current precipitation and aridity index of the site. Specifically, studies to date reported that extreme precipitation decreased ANPP in mesic sites, but, conversely, increased ANPP in xeric sites, suggesting that plant-available water is a key factor driving responses to extreme precipitation. Similarly, the effects of seasonal changes in precipitation on ANPP, phenology, and leaf and fruit development varied with the effect on SWC. Reductions in spring or summer generally had negative effects on plants, associated with reduced SWC, while subsequent reductions in autumn or winter had little effect on SWC or plants. Similarly, increased summer precipitation had a more dramatic impact on plants than winter increases in precipitation. The patterns of response suggest xeric biomes may respond positively to extreme precipitation, while comparatively mesic biomes may be more likely to be negatively affected. Moreover, seasonal changes in precipitation during warm or dry seasons may have larger effects than changes during cool or wet seasons. Accordingly, responses to redistributed precipitation will involve a complex interplay between plant-available water, plant functional type and resultant influences on plant phenology, growth and water relations. These results highlight the need for experiments across a range of soil types and plant functional types, critical for predicting future vegetation responses to future climates.


2009 ◽  
Vol 27 (4) ◽  
pp. 234-238 ◽  
Author(s):  
Marc W. van Iersel ◽  
Kate Seader ◽  
Sue Dove

Abstract A lack of adequate watering reduces the shelf life of many ornamental plants during retail. Our goals were to determine whether sprays or drenches with abscisic acid (ABA) can reduce transpiration and extend the shelf life of hydrangea (Hydrangea macrophylla). During the first 5 days after treatment, ABA drenches of 125 to 1000 ppm reduced stomatal conductance (gs) by 50 to 80% as compared to water. ABA-induced stomatal closure reduced plant water uptake from the substrate; control plants took up half of the plant-available water during the first 7 days after treatment, while it took 14 days for plants drenched with 1000 ppm to take up half of the available water. Control plants wilted after 12 days and time to wilting of drenched plants increased with increasing ABA concentrations, up to 23 days in the 1000 ppm treatment. Spray treatments had little effect on gs and no detectable effect on water uptake or time to wilting. Some yellowing of older leaves was seen with ABA drenches of 500 or 1000 ppm. Despite this side effect, ABA drenches have potential to extend the shelf life of hydrangeas in retail environments.


Rangifer ◽  
2004 ◽  
pp. 83-91 ◽  
Author(s):  
Christian Uhlig ◽  
Tore E. Sveistrup ◽  
Ivar Schjelderup

Numerous investigations have documented changes in vegetation due to reindeer grazing in Finnmark County, Northern Norway. However, rather few studies have focused on impacts of reindeer grazing on soil properties. The aim of this investigation was to identify possible changes in physical and chemical soil properties due to reindeer grazing. Furthermore, root distribution was detected. At four different locations on Finnmarksvidda three sample sites each were selected subjectively according to lichen and plant cover: A) ample, B) reduced, and C) poor lichen and plant cover. It was supposed that differences in lichen and plant cover were due to differences in reindeer grazing intensity. Results showed that the organic layer beneath ample lichen cover had an about 20% higher CEC and a 30—50% higher concentration of plant available Ca and Mg and total Mg compared to those beneath reduced ones. At sites with poor lichen and plant cover, an organic layer was mostly missing. The exposed mineral Eh-horizons at these sites had a significant (P<0.05) higher organic C content, higher CEC, concentrations of total P, Ca and K, and plant available K, when compared to E-horizons beneath better lichen covers. Rooting depth and amounts of plant available water in the rooting zone were lower at sites with reduced and poor lichen cover. A relation was found between soil organic C and CEC for all soil samples, indicating that soil organic matter is an essential key factor for soil fertility at the investigate sites on Finnmarksvidda. Assuming that differences in lichen and plant cover are related to differences in grazing intensity, results indicate that overgrazing by reindeers can cause a significant degradation of the organic layer, followed by significant losses of essential plant nutrients, a reduction in plant available water and consequently soil fertility.


1996 ◽  
Vol 21 (1) ◽  
pp. 352-352
Author(s):  
Stanley R. Swier

Abstract The trial was conducted 10 May on a golf course rough, Amherst, NH. Plots were 10 X 10 ft, replicated 4 times, in a RCB design. Merit WP was applied in 4 gal water/1000 ft2 with a watering, can. Merit G granules were applied with a homemade salt shaker. Treatments were irrigated with 0.5 inch water after application. Plots were rated 30 Sep by counting the number of live grubs per 1 ft2. Conditions at the time of treatment were: air temperature 70°F; wind, 3 MPH; sky, clear; soil temperature, 1 inch, 60°F; thatch depth, 0.5 inch soil pH, 5.4; slope 0%; soil texture, silt loam, 47% sand, 50% silt, 3% clay; soil organic matter, 6.9%; soil moisture, 21.8%.


2008 ◽  
Vol 100 (3) ◽  
pp. AGJ2AGRONJ20070216 ◽  
Author(s):  
Pingping Jiang ◽  
Newell R. Kitchen ◽  
Stephen H. Anderson ◽  
E. John Sadler ◽  
Kenneth A. Sudduth

Sign in / Sign up

Export Citation Format

Share Document