scholarly journals TERENGGANU SOIL SERIES TEXTURAL CLASSIFICATION AND ITS IMPLICATION ON WATER CONSERVATION

2021 ◽  
Vol 83 (6) ◽  
pp. 117-124
Author(s):  
Sunny Goh Eng Giap ◽  
Rudiyanto - ◽  
Zakiyyah Jasni ◽  
Mohammad Fadhli Ahmad

The updated Terengganu soil series has been made known to the public in 2018 by the Department of Agriculture, Malaysia. One of the most important physical aspects not quantify is the parameter relating to soil’s ability to contain water and allow water infiltration. This information is necessary to help farmers to know the soil suitability characteristics. In the current study, we retrieve the soil particle size of the soil series for further investigation. A pedotransfer function was used to estimate the soil water retention. The properties were then used to estimate the field capacity (FC), permanent wilting point (PWP), and the plant available water (PAW). In this study, we found twelve soil series in Terengganu state. The soil series were categorized into clay, sand, loamy sand, silty clay loam, and clay loam. Batu Hitam, Tasik, Lubok Kiat, Kampong Pusu, Tok Yong, Jerangau, and Tersat Series were found as clay soil. Jambu and Rhu Tapai Series as sand soil. Rudua, Gondang, and Kuala Brang Series corresponded to clay loam, silty clay loam, and  loamy sand. Among the soil series, Gondang Series appeared to be the most preferred soil for plantation due to its ability to give the highest plant available water, a lower water infiltration duration than clay, and it required lesser water for irrigation than the clay soil.

Soil Research ◽  
2013 ◽  
Vol 51 (3) ◽  
pp. 182 ◽  
Author(s):  
Danfeng Li ◽  
Ming'an Shao

The heterogeneity of textures in soil profiles is important for quantifying the movement of water and solutes through soil. Soil-profile textures to a depth of 300 cm were investigated at 100 sites in a 100-km2 area in the central region of the Heihe River system, where oases coexist with widespread deserts and wetland. The probability distribution of textural-layer thickness was quantified. The vertical transition of the soil textural layers was characterised by a Markov chain–log-normal distribution (MC-LN) model based on the probability of one textural type transitioning to another. Nine types of textural layers were observed: sand, loamy sand, sandy loam, silt loam, loam, clay loam, silty clay loam, silty clay, and clay. Sand was the most frequent in the profiles, whereas silt loam and clay were rare. The layers of sand and silty clay were relatively thick, and the layers of loam and clay were relatively thin. The coefficients of variation ranged from 36–87%, indicating moderate variation in the layer thickness of each textural type. The soil profile was characterised as a log-normal distribution. A χ2 test verified the Markov characteristic and the stability of the vertical change of soil textural layers. Realisations of the soil textural profiles were generated by the MC-LN model. A Monte Carlo simulation indicated that the simulated mean layer thickness of each textural type agreed well with the corresponding field observations. Element values of the transition probability matrix of the textural layers simulated by the MC-LN model deviated <12.6% from the measured values, excluding the data from the layers of clay and silt loam. The main combinations of upper to lower textural layers in the study area were loamy sand and sand (or sandy loam), sandy loam and sand (or loamy sand and loam), loam and clay loam, clay loam (or silty clay) and silty clay loam, and silty clay loam and silty clay. The MC-LN model was able to accurately quantify the vertical changes of textures in the soil profiles. This study will aid in quantification of water and solute transport in soils with vertical heterogeneity of soil textural layers.


Weed Science ◽  
1973 ◽  
Vol 21 (6) ◽  
pp. 524-527 ◽  
Author(s):  
E. A. Woolson

Six vegetable crops were greenhouse-grown to maturity in three Maryland soils treated with up to 500 ppm of arsenic (As) added as sodium arsenate. Phytotoxicity of arsenic residues was highest on Lakeland loamy sand and lowest on Hagerstown silty clay loam. Correlations between available arsenic and plant dry weight indicated that crop sensitivity proceeded as follows: green beans (Phaseolus vulgaris L. ‘stringless greenpod’) > lima beans (Phaseolus linensis L. ‘Fordhook 242’) spinach (Spinacia oleracea L. ‘Longstanding Bloomsdale Savoy’) > radish (Raphanus sativus L. ‘Champion’) > tomato (Lycopersicon esculentum Mill. ‘F-7’) > cabbage (Brassica oleracea L. var. capitata L. ‘Jersey Wakefield’). Residues in the total dry plant at the available arsenic level at which growth was reduced 50% (GR50) were highest with radish (43.8 ppm) and spinach (10.0 ppm). Residues in the dry-edible portion increased to 76.0 ppm arsenic for unpeeled, washed radish at the GR50 point. The soil at the GR50 level for radish contained about 19 ppm of available arsenic from a 50 ppm arsenate treatment to Lakeland loamy sand and a 100 ppm treatment to Hagerstown silty clay loam and to Christiana clay loam.


2005 ◽  
Vol 68 (6) ◽  
pp. 1134-1142 ◽  
Author(s):  
STEVEN C. INGHAM ◽  
MELODY A. FANSLAU ◽  
REBECCA A. ENGEL ◽  
JEFFRY R. BREUER ◽  
JANE E. BREUER ◽  
...  

Fresh bovine manure was mechanically incorporated into loamy sand and silty clay loam Wisconsin soils in April 2004. At varying fertilization-to-planting intervals, radish, lettuce, and carrot seeds were planted; crops were harvested 90, 100, 110 or 111, and 120 days after manure application. As an indicator of potential contamination with fecal pathogens, levels of Escherichia coli in the manure-fertilized soil and presence of E. coli on harvested vegetables were monitored. From initial levels of 4.0 to 4.2 log CFU/g, E. coli levels in both manure-fertilized soils decreased by 2.4 to 2.5 log CFU/g during the first 7 weeks. However, E. coli was consistently detected from enriched soil samples through week 17, perhaps as a result of contamination by birds and other wildlife. In the higher clay silty clay loam soil, the fertilization-to-planting interval affected the prevalence of E. coli on lettuce but not on radishes and carrots. Root crop contamination was consistent across different fertilization-to-harvest intervals in silty clay loam, including the National Organic Program minimum fertilization-to-harvest interval of 120 days. However, lettuce contamination in silty clay loam was significantly (P &lt; 0.10) affected by fertilization-to-harvest interval. Increasing the fertilization-to-planting interval in the lower clay loamy sand soil decreased the prevalence of E. coli on root crops. The fertilization-to-harvest interval had no clear effect on vegetable contamination in loamy sand. Overall, these results do not provide grounds for reducing the National Organic Program minimum fertilization-to-harvest interval from the current 120-day standard.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Giselle K. P. Guron ◽  
Gustavo Arango-Argoty ◽  
Liqing Zhang ◽  
Amy Pruden ◽  
Monica A. Ponder

ABSTRACTDairy cattle are routinely treated with antibiotics, and the resulting manure or composted manure is commonly used as a soil amendment for crop production, raising questions regarding the potential for antibiotic resistance to propagate from “farm to fork.” The objective of this study was to compare the microbiota and “resistomes” (i.e., carriage of antibiotic resistance genes [ARGs]) associated with lettuce leaf and radish taproot surfaces grown in different soils amended with dairy manure, compost, or chemical fertilizer only (control). Manure was collected from antibiotic-free dairy cattle (DC) or antibiotic-treated dairy cattle (DA), with a portion composted for parallel comparison. Amendments were applied to loamy sand or silty clay loam, and lettuce and radishes were cultivated to maturity in a greenhouse. Metagenomes were profiled via shotgun Illumina sequencing. Radishes carried a distinct ARG composition compared to that of lettuce, with greater relative abundance of total ARGs. Taxonomic species richness was also greater for radishes by 1.5-fold. The resistomes of lettuce grown with DC compost were distinct from those grown with DA compost, DC manure, or fertilizer only. Further, compost applied to loamy sand resulted in twofold-greater relative abundance of total ARGs on lettuce than when applied to silty clay loam. The resistomes of radishes grown with biological amendments were distinct from the corresponding fertilizer controls, but effects of composting or antibiotic use were not measureable. Cultivation in loamy sand resulted in higher species richness for both lettuce and radishes than when grown in silty clay loam by 2.2-fold and 1.2-fold, respectively, when amended with compost.IMPORTANCEA controlled, integrated, and replicated greenhouse study, along with comprehensive metagenomic analysis, revealed that multiple preharvest factors, including antibiotic use during manure collection, composting, biological soil amendment, and soil type, influence vegetable-borne resistomes. Here, radishes, a root vegetable, carried a greater load of ARGs and species richness than lettuce, a leafy vegetable. However, the lettuce resistome was more noticeably influenced by upstream antibiotic use and composting. Network analysis indicated that cooccurring ARGs and mobile genetic elements were almost exclusively associated with conditions receiving raw manure amendments, suggesting that composting could alleviate the mobility of manure-derived resistance traits. Effects of preharvest factors on associated microbiota and resistomes of vegetables eaten raw are worthy of further examination in terms of potential influence on human microbiomes and spread of antibiotic resistance. This research takes a step toward identifying on-farm management practices that can help mitigate the spread of agricultural sources of antibiotic resistance.


CATENA ◽  
2017 ◽  
Vol 156 ◽  
pp. 365-374 ◽  
Author(s):  
Torsten Starkloff ◽  
Mats Larsbo ◽  
Jannes Stolte ◽  
Rudi Hessel ◽  
Coen Ritsema

Author(s):  
Mohammed Aajmi Salman ◽  
Jawad A. Kamal Al-Shibani

Beneficial microorganisms play a key role in the availability of ions minerals in the soil and use Randomized Complete Block Desing ( R.C.B.D ). The objective of this paper to the study effect of the of biofertilizer and miniral treatments on availability of NPK for crop corn zea mays L.Two types of biofertilizer are Bacterial Bacillus subtilis and Fungal Trichoderma harianum. Three levels of potassium fertilizer are (2.9533, 0.4000 and 2.9533). A field experiment in fall season of 2018 Has been conducted in silty clay loam soil. The experimental Results indicated that Bacillus and Trichoderma inoculation separately or together Have made a significant effect to increase in the availability of N P K in the soil compare to other treatments. The grain yield is where (2.9533, 0.4000 and 2.9533) of bacterial and fungal bio-fertilizer and potassium fertilizers respectively as compared to the control.


Sign in / Sign up

Export Citation Format

Share Document