scholarly journals Impacts of extreme precipitation and seasonal changes in precipitation on plants

2014 ◽  
Vol 11 (11) ◽  
pp. 3083-3093 ◽  
Author(s):  
M. J. B. Zeppel ◽  
J. V. Wilks ◽  
J. D. Lewis

Abstract. The global hydrological cycle is predicted to become more intense in future climates, with both larger precipitation events and longer times between events in some regions. Redistribution of precipitation may occur both within and across seasons, and the resulting wide fluctuations in soil water content (SWC) may dramatically affect plants. Though these responses remain poorly understood, recent research in this emerging field suggests the effects of redistributed precipitation may differ from predictions based on previous drought studies. We review available studies on both extreme precipitation (redistribution within seasons) and seasonal changes in precipitation (redistribution across seasons) on grasslands and forests. Extreme precipitation differentially affected above-ground net primary productivity (ANPP), depending on whether extreme precipitation led to increased or decreased SWC, which differed based on the current precipitation and aridity index of the site. Specifically, studies to date reported that extreme precipitation decreased ANPP in mesic sites, but, conversely, increased ANPP in xeric sites, suggesting that plant-available water is a key factor driving responses to extreme precipitation. Similarly, the effects of seasonal changes in precipitation on ANPP, phenology, and leaf and fruit development varied with the effect on SWC. Reductions in spring or summer generally had negative effects on plants, associated with reduced SWC, while subsequent reductions in autumn or winter had little effect on SWC or plants. Similarly, increased summer precipitation had a more dramatic impact on plants than winter increases in precipitation. The patterns of response suggest xeric biomes may respond positively to extreme precipitation, while comparatively mesic biomes may be more likely to be negatively affected. Moreover, seasonal changes in precipitation during warm or dry seasons may have larger effects than changes during cool or wet seasons. Accordingly, responses to redistributed precipitation will involve a complex interplay between plant-available water, plant functional type and resultant influences on plant phenology, growth and water relations. These results highlight the need for experiments across a range of soil types and plant functional types, critical for predicting future vegetation responses to future climates.

2013 ◽  
Vol 10 (10) ◽  
pp. 16645-16673 ◽  
Author(s):  
M. J. B. Zeppel ◽  
J. Wilks ◽  
J. D. Lewis

Abstract. The hydrological cycle is predicted to become more intense in future climates, with both larger precipitation events and longer times between events. Redistribution of precipitation may occur both within and across seasons, and the resulting wide fluctuations in soil water content may dramatically affect plants. Though these responses remain poorly understood, recent research in this emerging field suggests the effects of redistributed precipitation may differ from predictions based on previous drought studies. We review available studies on both extreme precipitation (redistribution within seasons) and seasonal changes in precipitation (redistribution across seasons) on grasslands and forests. Extreme precipitation differentially affected Aboveground Net Primary Productivity (ANPP), depending on whether extreme precipitation led to increased or decreased soil water content (SWC), which differed based on the current precipitation at the site. Specifically, studies to date reported that extreme precipitation decreased ANPP in mesic sites, but, conversely, increased ANPP in xeric sites, suggesting that plant available water is a key factor driving responses to extreme precipitation. Similarly, the effects of seasonal changes in precipitation on ANPP, phenology, and leaf and fruit development varied with the effect on SWC. Reductions in spring or summer generally had negative effects on plants, associated with reduced SWC, while subsequent reductions in autumn or winter had little effect on SWC or plants. Similarly, increased summer precipitation had a more dramatic impact on plants than winter increases in precipitation. The patterns of response suggest xeric biomes may respond positively to extreme precipitation, while comparatively mesic biomes may be more likely to be negatively affected. And, seasonal changes in precipitation during warm or dry seasons may have larger effects than changes during cool or wet seasons. Accordingly, responses to redistributed precipitation will involve a complex interplay between plant available water, plant functional type, soil type and resultant influences on plant phenology, growth and water relations. These results highlight the need for experiments across a range of plant functional types, critical for predicting future vegetation responses to future climates.


2021 ◽  
Vol 13 (6) ◽  
pp. 3462
Author(s):  
Maider Aldaz Odriozola ◽  
Igor Álvarez Etxeberria

Corruption is a key factor that affects countries’ development, with emerging countries being a geographical area in which it tends to generate greater negative effects. However, few empirical studies analyze corruption from the point of view of disclosure by companies in this relevant geographical area. Based on a regression analysis using data from the 96 large companies from 15 emerging countries included in the 2016 International Transparency Report, this paper seeks to understand what determinants affect such disclosure. In that context, this paper provides empirical evidence to understand the factors that influence reporting on anti-corruption mechanisms in an area of high economic importance that has been little studied to date, pointing to the positive effect of press freedom in a country where the company is located and with the industry being the unique control variable that strengthens this relationship.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1509
Author(s):  
Mengru Zhang ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Ming Pan ◽  
Shanhu Jiang ◽  
...  

In the context of global climate change, it is important to monitor abnormal changes in extreme precipitation events that lead to frequent floods. This research used precipitation indices to describe variations in extreme precipitation and analyzed the characteristics of extreme precipitation in four climatic (arid, semi-arid, semi-humid and humid) regions across China. The equidistant cumulative distribution function (EDCDF) method was used to downscale and bias-correct daily precipitation in eight Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs). From 1961 to 2005, the humid region had stronger and longer extreme precipitation compared with the other regions. In the future, the projected extreme precipitation is mainly concentrated in summer, and there will be large areas with substantial changes in maximum consecutive 5-day precipitation (Rx5) and precipitation intensity (SDII). The greatest differences between two scenarios (RCP4.5 and RCP8.5) are in semi-arid and semi-humid areas for summer precipitation anomalies. However, the area of the four regions with an increasing trend of extreme precipitation is larger under the RCP8.5 scenario than that under the RCP4.5 scenario. The increasing trend of extreme precipitation in the future is relatively pronounced, especially in humid areas, implying a potential heightened flood risk in these areas.


2019 ◽  
Vol 32 (23) ◽  
pp. 8087-8109 ◽  
Author(s):  
Mark D. Risser ◽  
Christopher J. Paciorek ◽  
Travis A. O’Brien ◽  
Michael F. Wehner ◽  
William D. Collins

Abstract The gridding of daily accumulated precipitation—especially extremes—from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based on such gridded daily datasets are generally underestimated. In this paper, we characterize high-resolution changes in observed extreme precipitation from 1950 to 2017 for the contiguous United States (CONUS) based on in situ measurements only. Our analysis utilizes spatial statistical methods that allow us to derive gridded estimates that do not smooth extreme daily measurements and are consistent with statistics from the original station data while increasing the resulting signal-to-noise ratio. Furthermore, we use a robust statistical technique to identify significant pointwise changes in the climatology of extreme precipitation while carefully controlling the rate of false positives. We present and discuss seasonal changes in the statistics of extreme precipitation: the largest and most spatially coherent pointwise changes are in fall (SON), with approximately 33% of CONUS exhibiting significant changes (in an absolute sense). Other seasons display very few meaningful pointwise changes (in either a relative or absolute sense), illustrating the difficulty in detecting pointwise changes in extreme precipitation based on in situ measurements. While our main result involves seasonal changes, we also present and discuss annual changes in the statistics of extreme precipitation. In this paper we only seek to detect changes over time and leave attribution of the underlying causes of these changes for future work.


2013 ◽  
Vol 9 (2) ◽  
pp. 841-858 ◽  
Author(s):  
C. Giry ◽  
T. Felis ◽  
M. Kölling ◽  
W. Wei ◽  
G. Lohmann ◽  
...  

Abstract. Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and δ18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Δδ18O records are used as a proxy for the oxygen isotopic composition of seawater (δ18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual δ18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual δ18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.


2009 ◽  
Vol 27 (4) ◽  
pp. 234-238 ◽  
Author(s):  
Marc W. van Iersel ◽  
Kate Seader ◽  
Sue Dove

Abstract A lack of adequate watering reduces the shelf life of many ornamental plants during retail. Our goals were to determine whether sprays or drenches with abscisic acid (ABA) can reduce transpiration and extend the shelf life of hydrangea (Hydrangea macrophylla). During the first 5 days after treatment, ABA drenches of 125 to 1000 ppm reduced stomatal conductance (gs) by 50 to 80% as compared to water. ABA-induced stomatal closure reduced plant water uptake from the substrate; control plants took up half of the plant-available water during the first 7 days after treatment, while it took 14 days for plants drenched with 1000 ppm to take up half of the available water. Control plants wilted after 12 days and time to wilting of drenched plants increased with increasing ABA concentrations, up to 23 days in the 1000 ppm treatment. Spray treatments had little effect on gs and no detectable effect on water uptake or time to wilting. Some yellowing of older leaves was seen with ABA drenches of 500 or 1000 ppm. Despite this side effect, ABA drenches have potential to extend the shelf life of hydrangeas in retail environments.


Rangifer ◽  
2004 ◽  
pp. 83-91 ◽  
Author(s):  
Christian Uhlig ◽  
Tore E. Sveistrup ◽  
Ivar Schjelderup

Numerous investigations have documented changes in vegetation due to reindeer grazing in Finnmark County, Northern Norway. However, rather few studies have focused on impacts of reindeer grazing on soil properties. The aim of this investigation was to identify possible changes in physical and chemical soil properties due to reindeer grazing. Furthermore, root distribution was detected. At four different locations on Finnmarksvidda three sample sites each were selected subjectively according to lichen and plant cover: A) ample, B) reduced, and C) poor lichen and plant cover. It was supposed that differences in lichen and plant cover were due to differences in reindeer grazing intensity. Results showed that the organic layer beneath ample lichen cover had an about 20% higher CEC and a 30—50% higher concentration of plant available Ca and Mg and total Mg compared to those beneath reduced ones. At sites with poor lichen and plant cover, an organic layer was mostly missing. The exposed mineral Eh-horizons at these sites had a significant (P<0.05) higher organic C content, higher CEC, concentrations of total P, Ca and K, and plant available K, when compared to E-horizons beneath better lichen covers. Rooting depth and amounts of plant available water in the rooting zone were lower at sites with reduced and poor lichen cover. A relation was found between soil organic C and CEC for all soil samples, indicating that soil organic matter is an essential key factor for soil fertility at the investigate sites on Finnmarksvidda. Assuming that differences in lichen and plant cover are related to differences in grazing intensity, results indicate that overgrazing by reindeers can cause a significant degradation of the organic layer, followed by significant losses of essential plant nutrients, a reduction in plant available water and consequently soil fertility.


Sign in / Sign up

Export Citation Format

Share Document