scholarly journals Structural Insights into the pH-Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor

Structure ◽  
2018 ◽  
Vol 26 (1) ◽  
pp. 60-71.e3 ◽  
Author(s):  
Zhenzheng Hu ◽  
Xiangyi Shi ◽  
Bowen Yu ◽  
Na Li ◽  
Ying Huang ◽  
...  
2021 ◽  
Vol 701 ◽  
pp. 108786
Author(s):  
Deepali Gupta ◽  
Pragya Tiwari ◽  
Md Anzarul Haque ◽  
Ekta Sachdeva ◽  
Md Imtaiyaz Hassan ◽  
...  

2004 ◽  
Vol 44 (supplement) ◽  
pp. S199
Author(s):  
M. Ohkouchi ◽  
K. Nagashima ◽  
Y. Yamada ◽  
M. Ikeguchi

2022 ◽  
Author(s):  
Liqi Yao ◽  
Clay Clark

All caspases evolved from a common ancestor and subsequently developed into two general classes, inflammatory or apoptotic caspases. The caspase-hemoglobinase fold has been conserved throughout nearly one billion years of evolution and is utilized for both the monomeric and dimeric subfamilies of apoptotic caspases, called initiator and effector caspases, respectively. We compared the folding and assembly of procaspase-3b from zebrafish to that of human effector procaspases in order to examine the conservation of the folding landscape. Urea-induced equilibrium folding/unfolding of procaspase-3b showed a minimum three-state folding pathway, where the native dimer isomerizes to a partially folded dimeric intermediate, which then unfolds. A partially folded monomeric intermediate observed in the folding landscape of human procaspase-3 is not well-populated in zebrafish procaspase-3b. By comparing effector caspases from different species, we show that the effector procaspase dimer undergoes a pH-dependent conformational change, and that the conformational species in the folding landscape exhibit similar free energies. Together, the data show that the landscape for the caspase-hemoglobinase fold is conserved, yet it provides flexibility for species-specific stabilization or destabilization of folding intermediates resulting in changes in stability. The common pH-dependent conformational change in the native dimer, which yields an enzymatically inactive species, may provide an additional, albeit reversible, mechanism for controlling caspase activity in the cell.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yunjie Chang ◽  
Ki Hwan Moon ◽  
Xiaowei Zhao ◽  
Steven J Norris ◽  
MD A Motaleb ◽  
...  

The bacterial flagellar motor is a molecular machine that can rotate the flagellar filament at high speed. The rotation is generated by the stator–rotor interaction, coupled with an ion flux through the torque-generating stator. Here we employed cryo-electron tomography to visualize the intact flagellar motor in the Lyme disease spirochete, Borrelia burgdorferi. By analyzing the motor structures of wild-type and stator-deletion mutants, we not only localized the stator complex in situ, but also revealed the stator–rotor interaction at an unprecedented detail. Importantly, the stator–rotor interaction induces a conformational change in the flagella C-ring. Given our observation that a non-motile mutant, in which proton flux is blocked, cannot generate the similar conformational change, we propose that the proton-driven torque is responsible for the conformational change required for flagellar rotation.


FEBS Journal ◽  
2005 ◽  
Vol 272 (11) ◽  
pp. 2773-2783 ◽  
Author(s):  
Tomoaki Kato ◽  
Daizo Hamada ◽  
Takashi Fukui ◽  
Makoto Hayashi ◽  
Takeshi Honda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document