scholarly journals The Helix Rearrangement in the Periplasmic Domain of the Flagellar Stator B Subunit Activates Peptidoglycan Binding and Ion Influx

Structure ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 590-598.e5 ◽  
Author(s):  
Seiji Kojima ◽  
Masato Takao ◽  
Gaby Almira ◽  
Ikumi Kawahara ◽  
Mayuko Sakuma ◽  
...  
2021 ◽  
Author(s):  
Michio Homma ◽  
Hiroyuki Terashima ◽  
Hiroaki Koiwa ◽  
Seiji Kojima

Bacterial flagella are the best-known rotational organelles in the biological world. The spiral-shaped flagellar filaments that extending from the cell surface rotate like a screw to create a propulsive force. At the base of the flagellar filament lies a protein motor that consists of a stator and a rotor embedded in the membrane. The stator is composed of two types of membrane subunits, PomA(MotA) and PomB(MotB), which are energy converters that assemble around the rotor to couple rotation with the ion flow. Recently, stator structures, where two MotB molecules are inserted into the center of a ring made of five MotA molecules, were reported. This structure inspired a model in which the MotA ring rotates around the MotB dimer in response to ion influx. Here, we focus on the Vibrio PomB plug region, which is involved in flagellar motor activation. We investigated the plug region using site-directed photo-crosslinking and disulfide crosslinking experiments. Our results demonstrated that the plug interacts with the extracellular short loop region of PomA, which is located between transmembrane helices 3 and 4. Although the motor stopped rotating after crosslinking, its function recovered after treatment with a reducing reagent that disrupted the disulfide bond. Our results support the hypothesis, which has been inferred from the stator structure, that the plug region terminates the ion influx by blocking the rotation of the rotor as a spanner. Importance The biological flagellar motor resembles a mechanical motor. It is composed of a stator and a rotor. The force is transmitted to the rotor by the gear-like stator movements. It has been proposed that the pentamer of MotA subunits revolves around the axis of the B subunit dimer in response to ion flow. The plug region of the B subunit regulates the ion flow. Here, we demonstrated that the ion flow was terminated by crosslinking the plug region of PomB with PomA. These findings support the rotation hypothesis and explain the role of the plug region in blocking the rotation of the stator unit.


2006 ◽  
Vol 176 (5) ◽  
pp. 2749-2757 ◽  
Author(s):  
Carmelo Luci ◽  
Catherine Hervouet ◽  
Déborah Rousseau ◽  
Jan Holmgren ◽  
Cecil Czerkinsky ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 151
Author(s):  
Julia Ebeling ◽  
Anne Fünfhaus ◽  
Elke Genersch

The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis.


1994 ◽  
Vol 10 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Takao Tsuji ◽  
Michio Kato ◽  
Yutaka Kato ◽  
Hidetsugu Kawase ◽  
Seizi Imamura ◽  
...  
Keyword(s):  

Vaccine ◽  
2009 ◽  
Vol 27 (32) ◽  
pp. 4289-4296 ◽  
Author(s):  
Caleb G. Chen ◽  
Yen-Ta Lu ◽  
Marie Lin ◽  
Natalia Savelyeva ◽  
Freda K. Stevenson ◽  
...  

2003 ◽  
Vol 71 (8) ◽  
pp. 4808-4814 ◽  
Author(s):  
Firdausi Qadri ◽  
Edward T. Ryan ◽  
A. S. G. Faruque ◽  
Firoz Ahmed ◽  
Ashraful Islam Khan ◽  
...  

ABSTRACT Gut-derived lymphocytes transiently migrate through the peripheral circulation before homing back to mucosal sites and can be detected using an ELISPOT-based antibody secreting cell (ASC) assay. Alternatively, transiently circulating lymphocytes may be cultured in vitro, and culture supernatants may be assayed for antigen-specific responses (antibody in lymphocyte supernatant [ALS] assay). The ALS assay has not been validated extensively in natural mucosal infection, nor has the ALS response been compared to the ASC assay and other cholera-specific immunological responses. Accordingly, we examined immune responses in 30 adult patients with acute cholera in Bangladesh, compared with 10 healthy controls, measuring ALS-immunoglobulin A (IgA), ASC-IgA, and serum and fecal IgA responses to two potent Vibrio cholerae immunogens, the nontoxic B subunit of cholera toxin (CtxB) and lipopolysaccharide (LPS) and a weaker V. cholerae immunogen, the mannose-sensitive hemagglutinin (MSHA). We found significant increases of anti-CtxB, anti-LPS, and anti-MSHA IgA in supernatants of lymphocytes cultured 7 days after onset of cholera using the ALS assay. We found that ALS and ASC responses correlated extremely well; both had comparable sensitivities as the vibriocidal responses, and both procedures were more sensitive than fecal IgA measurements. An advantage of the ALS assay for studying mucosal immune responses is the ability to freeze antibodies in supernatants for subsequent evaluation; like the ASC assay, the ALS assay can distinguish recent from remote mucosal infection, a distinction that may be difficult to make in endemic settings using other procedures.


Sign in / Sign up

Export Citation Format

Share Document