Widom line prediction by the Soave–Redlich–Kwong and Peng–Robinson equations of state

2018 ◽  
Vol 133 ◽  
pp. 367-371 ◽  
Author(s):  
A. Lamorgese ◽  
W. Ambrosini ◽  
R. Mauri
2020 ◽  
Vol 65 (9) ◽  
pp. 768
Author(s):  
M. P. Kozlovskii ◽  
O. A. Dobush

We propose a method for describing the phase behavior of a system consisting of particles of two sorts. The interaction of each species is described by interaction potentials containing the repulsive and attractive components. Asymmetry is ensured by different values of the interaction potentials of each sort. The grand partition function of a binary mixture is calculated in the zero-mode approximation. A line of critical points, which correspond to different proportions of the components, is calculated for specific values of parameters of the interaction potential. We have obtained an equation that relates the introduced mixing parameter x to the concentration of the system. An explicit expression of the pressure of the binary mixture is derived as a function of the relative temperature and the mixing parameter x to plot the Widom line. It is established that, for boundary values of this parameter (x = 0 and x = 1), the equation of state of a mixture turns into equations of state of its separate species.


2021 ◽  
Author(s):  
Daniel T. Banuti

Abstract Today, modern combustion systems and advanced cycles often reach operating pressures exceeding the working fluid’s or fuel’s critical pressure. While the liquid-gas coexistence line is the dominant feature in the fluid state space at low pressures, a supercritical analog to boiling, pseudo boiling, exists at supercritical pressures. Pseudo boiling is the transcritical state transition between supercritical liquid states and supercritical gaseous states, associated with peaks in heat capacity and thermal expansion. This transition occurs across a finite temperature interval. So far, the relation between the pseudo boiling line of tabulated hi-fi p-v-T data and the behavior of efficient engineering cubic equations of state (EOS) is unclear. In the present paper, we calculate the slope of the pseudo boiling line analytically from cubic equations of state. The Redlich-Kwong EOS leads to a constant value for all species, Peng-Robinson and Soave-Redlich-Kwong EOS yield a cubic dependency of the slope on the acentric factor. For more than twenty compounds with acentric factors ranging from −0.38 to 0.57 calculated slopes are compared with NIST data and vapor pressure correlations. Particularly the Peng-Robinson EOS matches reference data very well. Classical empirical values of Guggenheim or Plank & Riedel are obtained analytically. Then, pseudo boiling predictions of the Peng Robinson EOS are compared to NIST data. Deviations in transition temperature interval, and nondimensional parameters of the distributed latent heat are compared. Especially the different caloric behavior of tabulated fluid data for H2, N2, CO2, and H2O cannot be reproduced by the Peng Robinson EOS. These results may open the way towards new EOS with specific emphasis on Widom line and supercritical transition behavior.


2000 ◽  
Vol 98 (24) ◽  
pp. 2045-2052
Author(s):  
Keshawa P. Shukla, Walter G. Chapman
Keyword(s):  

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 515-521 ◽  
Author(s):  
Charles L. Merkle ◽  
Philip E. O. Buelow ◽  
Sankaran Venkateswaran ◽  
Jennifer Y. Sullivan
Keyword(s):  

Author(s):  
Natalia Andrulionis ◽  
Natalia Andrulionis ◽  
Ivan Zavialov ◽  
Ivan Zavialov ◽  
Elena Kovaleva ◽  
...  

This article presents a new method of laboratory density determination and construction equations of state for marine waters with various ionic compositions and salinities was developed. The validation of the method was performed using the Ocean Standard Seawater and the UNESCO thermodynamic equation of state (EOS-80). Density measurements of water samples from the Aral Sea, the Black Sea and the Issyk-Kul Lake were performed using a high-precision laboratory density meter. The obtained results were compared with the density values calculated for the considered water samples by the EOS-80 equation. It was shown that difference in ionic composition between Standard Seawater and the considered water bodies results in significant inaccuracies in determination of water density using the EOS-80 equation. Basing on the laboratory measurements of density under various salinity and temperature values we constructed a new equation of state for the Aral Sea and the Black Sea water samples and estimated errors for their coefficients.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Viorel Feroiu ◽  
Dan Geana ◽  
Catinca Secuianu

Vapour � liquid equilibrium, thermodynamic and volumetric properties were predicted for three pure hydrofluorocarbons: difluoromethane (R32), pentafluoroethane (R125) and 1,1,1,2 � tetrafluoroethane (R134a) as well as for binary and ternary mixtures of these refrigerants. Three cubic equations of state GEOS3C, SRK (Soave � Redlich � Kwong) and PR (Peng � Robinson) were used. A wide comparison with literature experimental data was made. For the refrigerant mixtures, classical van der Waals mixing rules without interaction parameters were used. The GEOS3C equation, with three parameters estimated by matching several points on the saturation curve (vapor pressure and corresponding liquid volumes), compares favorably to other equations in literature, being simple enough for applications.


2007 ◽  
Vol 5 ◽  
pp. 113-120 ◽  
Author(s):  
R.Kh. Bolotnova

The method of construction the wide-range equations of state for organic liquids, describing the gas and liquid phases including dissociation and ionization which occurs during an intense collapse of steam bubbles and accompanied by ultra-high pressures and temperatures, is proposed.


Sign in / Sign up

Export Citation Format

Share Document