coexistence line
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 454
Author(s):  
Krishna Aryal ◽  
Constantinos Constantinou ◽  
Ricardo L. S. Farias ◽  
Veronica Dexheimer

In this work, we discuss the deconfinement phase transition to quark matter in hot/dense matter. We examine the effect that different charge fractions, isospin fractions, net strangeness, and chemical equilibrium with respect to leptons have on the position of the coexistence line between different phases. In particular, we investigate how different sets of conditions that describe matter in neutron stars and their mergers, or matter created in heavy-ion collisions affect the position of the critical end point, namely where the first-order phase transition becomes a crossover. We also present an introduction to the topic of critical points, including a review of recent advances concerning QCD critical points.


2021 ◽  
Author(s):  
Daniel T. Banuti

Abstract Today, modern combustion systems and advanced cycles often reach operating pressures exceeding the working fluid’s or fuel’s critical pressure. While the liquid-gas coexistence line is the dominant feature in the fluid state space at low pressures, a supercritical analog to boiling, pseudo boiling, exists at supercritical pressures. Pseudo boiling is the transcritical state transition between supercritical liquid states and supercritical gaseous states, associated with peaks in heat capacity and thermal expansion. This transition occurs across a finite temperature interval. So far, the relation between the pseudo boiling line of tabulated hi-fi p-v-T data and the behavior of efficient engineering cubic equations of state (EOS) is unclear. In the present paper, we calculate the slope of the pseudo boiling line analytically from cubic equations of state. The Redlich-Kwong EOS leads to a constant value for all species, Peng-Robinson and Soave-Redlich-Kwong EOS yield a cubic dependency of the slope on the acentric factor. For more than twenty compounds with acentric factors ranging from −0.38 to 0.57 calculated slopes are compared with NIST data and vapor pressure correlations. Particularly the Peng-Robinson EOS matches reference data very well. Classical empirical values of Guggenheim or Plank & Riedel are obtained analytically. Then, pseudo boiling predictions of the Peng Robinson EOS are compared to NIST data. Deviations in transition temperature interval, and nondimensional parameters of the distributed latent heat are compared. Especially the different caloric behavior of tabulated fluid data for H2, N2, CO2, and H2O cannot be reproduced by the Peng Robinson EOS. These results may open the way towards new EOS with specific emphasis on Widom line and supercritical transition behavior.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1338
Author(s):  
Luis M. Sesé

Path integral Monte Carlo and closure computations are utilized to study real space triplet correlations in the quantum hard-sphere system. The conditions cover from the normal fluid phase to the solid phases face-centered cubic (FCC) and cI16 (de Broglie wavelengths 0.2≤λB*<2, densities 0.1≤ρN*≤0.925). The focus is on the equilateral and isosceles features of the path-integral centroid and instantaneous structures. Complementary calculations of the associated pair structures are also carried out to strengthen structural identifications and facilitate closure evaluations. The three closures employed are Kirkwood superposition, Jackson–Feenberg convolution, and their average (AV3). A large quantity of new data are reported, and conclusions are drawn regarding (i) the remarkable performance of AV3 for the centroid and instantaneous correlations, (ii) the correspondences between the fluid and FCC salient features on the coexistence line, and (iii) the most conspicuous differences between FCC and cI16 at the pair and the triplet levels at moderately high densities (ρN*=0.9, 0.925). This research is expected to provide low-temperature insights useful for the future related studies of properties of real systems (e.g., helium, alkali metals, and general colloidal systems).


2020 ◽  
Author(s):  
Seungtaek Lee ◽  
Juho Lee ◽  
Yeonguk Kim ◽  
Seok Jeong ◽  
Dong Eon Kim ◽  
...  

Abstract This study describes the discovery of a phase separation phenomenon in supercritical fluids (SCFs). An SCF is technically a single-phase fluid with two sub-domains separated by the Widom line. A pseudo phase transition occurs between liquid-like (LL) and gas-like (GL) states, similar to the gas-liquid phase transition across the coexistence line in subcritical fluids. By extending the analogy, we demonstrate that LL-GL phase separation is possible by generating submicron size LL argon droplets in a GL argon SCF. The GL fluid is in a quasi-equilibrium clustered state well above the critical temperature, with a significant increase in cluster formation rate traversing the critical pressure. The prolonged phase separation over an hour is consistent with a model of mass transport mediated by clusters. It provides the insight that clustering is an essential factor in transport and non-equilibrium thermodynamic processes in SCFs.


2020 ◽  
Vol 27 (2) ◽  
pp. 37-42
Author(s):  
A. N. Galdina

The supercritical transitions are widely occurring. They include the supercritical transitions in the liquid-vapor system, ferromagnetic transitions, transitions in polymers, many transitions in liquid crystals, and some structural transitions. In the paper it is emphasized that the nature of the critical and supercritical transitions is the same – these are continuous fluctuation transitions. Above the critical temperature the system passes through a region of lowered stability, which leads to increase of fluctuations of energy and external parameters of the system. From the point of view of thermodynamic stability this indicates the existence of a continuous supercritical transition between supercritical  mesophases. Knowing the basic stability characteristics of a system, we derive the equation of these mesophase transitions. Depending on a thermal equation type, we can get one or several such equations, which may not coincide. This approves the fact that a supercritical transition occurs in a certain interval of thermodynamic forces. In the paper the relations between the critical exponents of thermodynamic parameters of the system are obtained and the conditions of continuous conjugation of the lowered stability line to subcritical coexistence line are investigated. The results are applied to the Curie–Weiss and van der Waals models: we obtain the quasi-spinodal equation for these systems and analyze the critical and supercritical behavior of the stability characteristics.


2019 ◽  
Vol 63 (2) ◽  
pp. 270-275 ◽  
Author(s):  
Daniel Banuti

The article discusses the notion of a supercritical latent heat during 'pseudoboiling': Experimental, numerical, and theoretical evidence show that the supercritical state space is not homogeneous, but can be divided into liquid-like and gas-like domains, separated by an extension to the coexistence line -- the Widom line. The key concept are two limit states of ideal liquid and ideal gas, characterized by constant heat capacities, and analyze the transition between them. Then, analogous to subcritical vaporization, a supercritical state transition from liquid to gaseous overcomes intermolecular attractive forces, albeit over a finite temperature interval rather than at an equilibrium temperature. This distributed latent heat is in fact approximately invariant with respect to pressure for (0 < p < 3 pcr) and is thus valid at subcritical and supercritical conditions. This view also changes the perspective on subcritical latent heat: while it is an accurate representation of the required energy at very low pressures, the contribution of the distributed latent heat dominates the equilibrium latent heat as the critical pressure is approached.


2015 ◽  
Vol 142 (22) ◽  
pp. 224501 ◽  
Author(s):  
Jiayuan Luo ◽  
Limei Xu ◽  
C. Austen Angell ◽  
H. Eugene Stanley ◽  
Sergey V. Buldyrev
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document