Effects of heat treatments on oxidation resistance and mechanical properties of ultra high temperature ceramic coatings

2008 ◽  
Vol 202 (18) ◽  
pp. 4394-4398 ◽  
Author(s):  
Mario Tului ◽  
Stefano Lionetti ◽  
Giovanni Pulci ◽  
Elviro Rocca ◽  
Teodoro Valente ◽  
...  
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Ho Seok Kim ◽  
Bo Ram Kang ◽  
Seong Man Choi

To improve the oxidation resistance of carbon composites at high temperatures, hafnium carbide (HfC) and titanium carbide (TiC) ultra-high-temperature ceramic coatings were deposited using vacuum plasma spraying. Single-layer HfC and TiC coatings and multilayer HfC/TiC coatings were fabricated and compared. The microstructure and composition of the fabricated coatings were analyzed using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The coating thicknesses of the HfC and TiC single-layer coatings were 165 µm and 140 µm, respectively, while the thicknesses of the HfC and TiC layers in the HfC/TiC multi-layer coating were 40 µm and 50 µm, respectively. No oxides were observed in any of the coating layers. The porosity was analyzed from cross-sectional images of the coating layers obtained using optical microscopy. Five random areas for each coating layer specimen were analyzed, and average porosity values of approximately 16.8% for the HfC coating and 22.5% for the TiC coating were determined. Furthermore, the mechanical properties of the coating layers were investigated by measuring the hardness of the cross section and surface roughness. The hardness values of the HfC and TiC coatings were 1650.7 HV and 753.6 HV, respectively. The hardness values of the HfC and TiC layers in the multilayer sample were 1563.5 HV and 1059.2 HV, respectively. The roughness values were 5.71 µm for the HfC coating, 4.30 µm for the TiC coating, and 3.32 µm for the HfC/TiC coating.


2007 ◽  
Vol 336-338 ◽  
pp. 2481-2483 ◽  
Author(s):  
Guo Dong Hao ◽  
Zhao Hua Jiang ◽  
Zhong Ping Yao ◽  
Heng Ze Xian ◽  
Yan Li Jiang

Compound ceramic coatings with the main crystalline of Al2TiO5 (as-coated samples) were prepared on Ti-6Al-4V alloy by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution. The coated samples were calcined in Ar and air at 1000oC, respectively. The phase composition, morphology and element content of the coatings were investigated by XRD, SEM and XRF. The samples treated in Ar and the as-coated ones were calcined in air at 1000oC to study the oxidation resistance of the samples. The results showed that Al2TiO5 decomposed and transformed into corundum and rutile TiO2 during the high temperature calcination. Al2TiO5 decomposed very quickly in air and the proportion of Al2O3 to TiO2 was 44:55 after a complete decomposition. On the contrary, Al2TiO5 decomposed very slowly in argon with the final proportion of Al2O3 to TiO2 of 81:18 on the coating surface. The morphology of the ceramic coatings after the calcination was also different. The coatings calcined in argon were fined: the grains and pores were smaller than those of the coatings calcined in air. The weight gains of both coatings changed in the form of parabola law, and the weight gains of the coated samples treated in argon were comparatively lower than that of the as-coated samples. During the high temperature calcination, the samples treated in argon cannot distort easily, compared with the as-coated ones.


2012 ◽  
Vol 557-559 ◽  
pp. 108-111
Author(s):  
Xiao Liu ◽  
Hu Fei Zhang

The oxidation resistance and high temperature mechanical properties of FeCrNi heat-resisting steel are analyzed and studied. The results show that the oxidation resistance of the heat-resisting steel is improved remarkably after adding RE. The value of oxidation rate of Sample 1 (without adding RE) is 1.71 times higher than Sample 2, respectively at 1423K. And the value of oxidation rate of Sample 1 is 1.4 times higher than Sample 2, respectively at 1473K. The fracture mode of heat-resisting stainless steel is typical cleavage fracture, but dimple fracture after adding RE into the steel. The high temperature mechanical properties of heat-resisting steel is improved obviously by RE. In comparison with heat-resisting stainless steel without RE, the reduction of area of heat-resisting stainless steel with RE is increased 26.27% at 1123K.


Sign in / Sign up

Export Citation Format

Share Document