Possibility of spraying of copper coatings on polyamide 6 with low pressure cold spray method

2017 ◽  
Vol 318 ◽  
pp. 82-89 ◽  
Author(s):  
Aleksandra Małachowska ◽  
Marcin Winnicki ◽  
Łukasz Konat ◽  
Tomasz Piwowarczyk ◽  
Lech Pawłowski ◽  
...  
2017 ◽  
Vol 34 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Aleksandra Małachowska ◽  
Marcin Winnicki ◽  
Mateusz Stachowicz ◽  
Marcin Korzeniowski
Keyword(s):  

2021 ◽  
Author(s):  
Jean-Gabriel Legoux ◽  
Bruno Guerreiro ◽  
Dominique Poirier ◽  
Jason D. Giallonardo

Abstract In cold spray, high adhesion of soft materials on hard substrates is commonly achieved by using helium as the propelling gas. This is the case of copper coatings on steel where adhesion may reach values as high as 60 to 80 MPa (glue failure), however, helium is a limited, expensive natural resource, and the use of more abundant nitrogen gas is preferred in an industrial setting. Unfortunately, when using nitrogen gas, little to no adhesion is obtained. In order to eliminate the use of helium gas we studied how laser assisted cold spray could lead to an improvement in adhesion of nitrogen sprayed copper coatings. In this work, several laser parameters (e.g., power and spot size) and process parameters (traverse speed, relative position laser spot vs. gas jet) were varied at a coupon level. Upon optimization, an equivalent adhesion to the coatings prepared with helium was obtained. Furthermore, the cross section of the coatings showed that the copper particles penetrated the steel, similar to what is observed when using helium gas. Optimization of these parameters for application to large diameter (~559 mm) cylinders was also performed. A discussion on the mechanisms which contribute to achieving high adhesion considering the use of helium versus laser assistance is provided.


2012 ◽  
Vol 206 (16) ◽  
pp. 3488-3494 ◽  
Author(s):  
Seungchan Cho ◽  
Kenta Takagi ◽  
Hansang Kwon ◽  
Dowon Seo ◽  
Kazuhiro Ogawa ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1044
Author(s):  
Marcin Winnicki

Based on the recent analysis of various databases, cold spray (CS), the newest method among thermal spraying technologies, has received the unabated attention of hundreds of researchers continuously since its invention in the 1980s. The significance of CS lies in the low process temperature, which usually ensures compressive residual stresses and allows for the formation of coatings on a thermally sensitive substrate. This paper concerns the low-pressure cold spray (LPCS) variant employed for forming metal matrix composites (MMCs) with high ceramic contents and all-ceramic coatings. At the very beginning, the influence of LPCS process parameters on deposition efficiency (DE) is analysed. In the next part, the most useful feedstock powder preparation techniques for LCPS are presented. Due to the combination of bottom-up powder production methods (e.g., sol-gel (SG)) with LCPS, the metal matrix that works as a binder for ceramic particles in MMC coatings can be removed, resulting in all-ceramic coatings. Furthermore, with optimization of spraying parameters, it is possible to predict and control phase transformation in the feedstock material. Further in the paper, differences in the bonding mechanism of metal–ceramic mixtures and ceramic particles are presented. The properties and applications of various MMC and ceramic coatings are also discussed. Finally, the exemplary direction of CS development is suggested.


2017 ◽  
pp. 95-142
Author(s):  
Roman Gr. Maev ◽  
Volf Leshchynsky
Keyword(s):  

2021 ◽  
Vol 105 (1) ◽  
pp. 355-369
Author(s):  
Tomáš Binar ◽  
Jana Zimáková ◽  
Jakub Steiniger ◽  
Lukáš Řehořek ◽  
Petr Křivík ◽  
...  

A layer of copper was applied to the base aluminum material using the cold spray method (cold kinetic deposition). The samples were exposed to corrosion in a salt chamber for 100, 200 and 300 hours. The change in the size of the internal and surface resistance of the samples was monitored. The corrosion results were also examined using an electron microscope.


2019 ◽  
Vol 1281 ◽  
pp. 012041
Author(s):  
L A Krivina ◽  
I N Tsareva ◽  
Yu P Tarasenko ◽  
O B Berdnik

2004 ◽  
Vol 449-452 ◽  
pp. 1305-1308 ◽  
Author(s):  
Kazuhiko Sakaki

In Cold Spray method, a coating is formed by exposing a substrate to high velocity solid-phase particles, which have been accelerated by supersonic gas flow at a temperature much lower than the melting or softening temperature of the feedstock. Therefore, the nozzle geometry is important with regard to the cold spray method. This Cold Spray process is an exciting new spray technology that has the potential to overcome limitations of more traditional thermal spray processes for some important commercial applications. With this emerging technology, it is possible for the first time to rapidly deposit thin or very thick layers (mm to cm+) of a wide range of metals, and even some composite materials, without melting or vaporization, at or near room temperature, in an ambient air environment. Some potential areas of interest include:  corrosion protection,  wear reduction, highly conductive coatings (electrical or thermal), metal/glass or metal/ceramic joints (with less residual stress), ceramic/metal or graded metal/metal composites,  thick deposits (mm to several cm range), reclamation of worn or mis-machined parts, metallization of glass or ceramics. The applications of Cold Spray can be examined in the field of an automobile and a rocket engine.


Sign in / Sign up

Export Citation Format

Share Document