Interfacial characteristic and microstructure of Fe-based amorphous coating on magnesium alloy

2021 ◽  
Vol 425 ◽  
pp. 127659
Author(s):  
Haoran Zhang ◽  
Shanlin Wang ◽  
Xianglin Yang ◽  
Shilei Hao ◽  
Yuhua Chen ◽  
...  
2016 ◽  
Vol 108 ◽  
pp. 624-631 ◽  
Author(s):  
S.F. Guo ◽  
F.S. Pan ◽  
H.J. Zhang ◽  
D.F. Zhang ◽  
J.F. Wang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6571
Author(s):  
Haoran Zhang ◽  
Hongyan Wu ◽  
Shanlin Wang ◽  
Yuhua Chen ◽  
Yongde Huang ◽  
...  

To protect magnesium alloy surfaces from wear and corrosion, an Fe-based amorphous coating was prepared on WE43 through the Ni60 interlayer by high-velocity oxygen-fuel (HVOF) spraying. The porosity was ~1%, and the amorphous content exceeded 90%. The wear and corrosion resistance of the composite coating with WC particles wrapped in a Ni layer as the reinforcing phase were compared with that of the completely amorphous coating. The friction coefficient (COF) of the composite coating was 0.3, which is only half of that of the WE43 substrate, and the composite coating exhibited a more stable wear behavior than the completely amorphous coating. The corrosion tendency of the composite coating is lower than that of stainless steel, with a corrosion potential of −0.331 V, and the addition of WC particles did not deteriorate the corrosion resistance considerably. The bonding mechanism of the bonding interface between the amorphous structure and the particles of the reinforcing phase was investigated by transmission electron microscopy (TEM). Reinforcing particles were confirmed to form metallurgical bonding with the coating. It was found that the Ni layer showed excellent bonding performance in the form of a mixture that is amorphous and nanocrystalline. Therefore, the Fe-based amorphous composite coating on a magnesium alloy surface shows a potential protective effect.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4786
Author(s):  
Yijiao Sun ◽  
Weichao Wang ◽  
Hongxiang Li ◽  
Lu Xie ◽  
Yongbing Li ◽  
...  

To solve the problem of poor corrosion and wear resistance of Mg-Li alloys, Fe-based amorphous coatings were prepared by high velocity oxygen-fuel spraying technology (HVOF) on the LA141 magnesium alloy substrate with a Ni60 intermediate layer. The microstructure and performance of Fe-based amorphous coatings with different oxygen flow and kerosene flow were characterized and analyzed. The results demonstrate that there is an optimal oxygen/kerosene ratio where the porosity of Fe-based amorphous coating is the lowest. Moreover, the amorphous content increases with the decrease in the oxygen/kerosene ratio. In particular, when the oxygen flow is 53.8 m3/h and the kerosene flow is 26.5 L/h, the Fe-based amorphous coating possesses the lowest porosity (0.87%), the highest hardness (801 HV0.1), the highest bonding strength (56.9 MPa), and an excellent corrosion and wear resistance. Additionally, it can be seen that the Fe-based amorphous coating is composed of amorphous splats and amorphous oxides, but the Ni60 intermediate layer exhibits an amorphous and crystalline multi-phase structure. The high bonding strength of the coating is attributed to the low porosity of Fe-based amorphous coating and the localized metallurgical bonding between different layers. Finally, the mechanisms on corrosion and wear of Fe-based amorphous coatings are also discussed.


2013 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
M. Szafarska ◽  
J. Iwaszko ◽  
K. Kudła ◽  
I. Łegowik

The main aim of the study was the evaluation of magnesium alloy surface treatment effectiveness using high-energy heat sources, i.e. a Yb-YAG Disk Laser and the GTAW method. The AZ91 and AM60 commercial magnesium alloys were subject to surface layer modification. Because of the physicochemical properties of the materials studied in case of the GTAW method, it was necessary to provide the welding stand with additional equipment. A novel two-torch set with torches operating in tandem was developed within the experiment. The effectiveness of specimen remelting using a laser and the GTAW method was verified based on macro- and microscopic examinations as well as in X-ray phase analysis and hardness measurements. In addition, the remelting parameters were optimised. The proposed treatment methodology enabled the achieving of the intended result and effective modification of a magnesium alloy surface layer.


2019 ◽  
Vol 9 (2) ◽  
pp. 182-191
Author(s):  
Akihiro Minami ◽  
Hirokazu Tamura ◽  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi ◽  
Yasuo Marumo

Sign in / Sign up

Export Citation Format

Share Document