detonation spraying
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 64)

H-INDEX

13
(FIVE YEARS 3)

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1566
Author(s):  
Bauyrzhan Rakhadilov ◽  
Dauir Kakimzhanov ◽  
Daryn Baizhan ◽  
Gulnar Muslimanova ◽  
Sapargali Pazylbek ◽  
...  

This study is aimed at obtaining a coating of aluminum oxide containing α-Al2O3 as the main phase by detonation spraying, as well as a comparative study of the structural, tribological and mechanical properties of coatings with the main phases of α-Al2O3 and γ-Al2O3. It was experimentally revealed for the first time that the use of propane as a combustible gas and the optimization of the technological regime of detonation spraying leads to the formation of an aluminum oxide coating containing α-Al2O3 as the main phase. Tribological tests have shown that the coating with the main phase of α-Al2O3 has a low value of wear volume and coefficient of friction in comparison with the coating with the main phase of γ-Al2O3. It was also determined that the microhardness of the coating with the main phase of α-Al2O3 is 25% higher than that of the coatings with the main phase of γ-Al2O3. Erosion resistance tests have shown (evaluated by weight loss) that the coating with α-Al2O3 phase is erosion-resistant compared to the coating with γ-Al2O3 (seen by erosion craters). However, the coating with the main phase of γ-Al2O3 has a high value of adhesion strength, which is 2 times higher than that of the coating with the main phase of α-Al2O3. As the destruction of coatings by the primary phase, α-Al2O3 began at low loads than the coating with the main phase γ-Al2O3. The results obtained provide the prerequisites for the creation of wear-resistant, hard and durable layered coatings, in which the lower layer has the main phase of γ-Al2O3, and the upper layer has the main phase of α-Al2O3.


Author(s):  
Diana Hlushkova ◽  
Valeriy Bagrov

The development of modern technology places increasing demands on the performance of the hydraulic hammer parts. In a complex of problems of increasing their reliability and durability the question of wear resistance occupies a special place. Insufficient wear resistance limits the productivity of hydraulic hammers and their service life, increases the cost of repair and purchase of spare parts. Goal. The purpose of this work is to scientifically substantiate and experimentally confirm the effectiveness of strengthening the critical parts of the hydraulic hammer by detonation spraying. Methodology. Detonation spraying with hard alloy powder VK 25 (80 %) and the binder material PT-NA-01 (Ni 91 %, Al 9%) was performed on a cleaned surface without pre-treatment. VK 25 powder is a tungsten-cobalt carbide (WC-Co) containing up to 25% cobalt, and is used for work in conditions of fretting corrosion, abrasive wear at normal and elevated (up to 650 ° C) temperatures. A granular powder of 20 – 100 μm was used, which was melted in an oxygen-acetylene flame and gas flow and was transferred to the surface of the part. The thickness of the sprayed layer was 0.1 mm. The surface roughness of the parts before spraying was Ra 0.35–2.5. As a result of spraying, the roughness of the working surfaces of the parts increased to the values of Ra 4.8–5.4. Results. The composition of the coating based on tungsten carbide was chosen to strengthen the surface of the investigated parts by detonation spraying. Detonation spraying modes were selected. The conditions for hardening treatment were determined. The nature of damage to parts after detonation spraying was established. Originality To solve the problem of improving the performance of the working tool of hydraulic hammers, the use of the detonation method of coating was proposed. Practical value. The test results of the details strengthened by detonation spraying showed that the increase of wear resistance by 1,8 times in comparison with an initial variant was reached.


Aviation ◽  
2021 ◽  
Vol 25 (4) ◽  
pp. 262-267
Author(s):  
Serhii Nyzhnyk ◽  
Ihor Zorik ◽  
Kostiantyn Danko ◽  
Justas Nugaras

Problems of increasing the service life of compressor blades of aircraft gas turbine engines using detonation spraying technology are considered. The simulation of the parameters of the velocity and temperature of the particles of the sprayed material in the barrel of the detonation unit and in the flooded space to the substrate was carried out, followed by the choice of the optimal technological parameters of the spraying process. The control system of the detonation unit has been modernized. An experiment was carried out on the deposition of the Al2O3 coatings on the samples of a substrate made of titanium alloy VT3-1. Based on the results of the experiment, technological recommendations were developed concerning both the parameters of the spraying process and the parameters of the preparation of the substrate surface before spraying. The equipment for brazing the blades of the guide vanes is described and a device for spraying coatings on the end surfaces of the compressor blades is proposed. Thus, a complex technology has been developed for restoring the end surfaces of titanium alloy compressor blades by deposition of Al2O3 coatings.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1531
Author(s):  
Marina Kovaleva ◽  
Viacheslav Sirota ◽  
Igor Goncharov ◽  
Vseslav Novikov ◽  
Maxim Yapryntsev ◽  
...  

The problem of creating and implementing high-temperature coatings for the protection of carbon–carbon (C/C) composites remains relevant due to the extremely low or insufficient heat resistance of C/C composites in an oxygen-containing environment. In the present work, detonation spraying was used for preparing new ZrB2–35MoSi2–10Al coatings on the surface of C/C composites without a sublayer. As a stabilizer of high-temperature modification of zirconia, and to increase the wettability of the surface of C/C composites, 5 wt.% Y2O3 and 10 wt.% Al were added to the initial powder mixture, respectively. The structure of the as-sprayed coating presents many lamellae piled up one upon another, and is composed of hexagonal ZrB2 (h- ZrB2), tetragonal MoSi2 (t-MoSi2), monoclinic ZrO2 (m-ZrO2), tetragonal ZrO2 (t-ZrO2), monoclinic SiO2 (m-SiO2), and cubic Al phases. The oxidation behavior and microstructural evolution of the ZrB2–35MoSi2–10Al composite coating were characterized from RT to 1400 °C in open air. During oxidation at 1400 °C, a continuous layer of silicate glass was formed on the coating surface. This layer contained cubic ZrO2 (c-ZrO2), m-ZrO2, and small amounts of mullite and zircon. The results indicated that a new ZrB2–35MoSi2–10Al composite coating could be used on the surface of C/C composites as a protective layer from oxidation at elevated temperatures.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1524
Author(s):  
Bauyrzhan Rakhadilov ◽  
Dastan Buitkenov ◽  
Zhuldyz Sagdoldina ◽  
Zhanat Idrisheva ◽  
Manira Zhamanbayeva ◽  
...  

This paper investigates the influence of the technological parameters of detonation spraying on the phase composition of NiCr- and Al2O3-based coatings. It was determined that the phase composition of Al2O3 coatings during detonation spraying strongly depends on the barrel filling volume with the gas mixture. The acetylene–oxygen mixture, which is the most frequently used fuel in the detonation spraying of powder materials, was used as a fuel gas. To obtain a ceramic layer based on Al2O3, spraying was performed at an acetylene–oxygen O2/C2H2 mixture ratio of 1.856; the volume of filling of the detonation gun barrel with an explosive gas mixture was 63%. To obtain a NiCr-based metallic layer, spraying was performed at the O2/C2H2 ratio of 1.063; the volume of filling of the detonation gun barrel with an explosive gas mixture was 54%. Based on a study of the effect of the detonation spraying mode on the phase composition of NiCr and Al2O3 coatings, NiCr/NiCr-Al2O3/Al2O3-based multilayer coatings were obtained. Mixtures of NiCr/Al2O3 powders with different component ratios were used to obtain multilayer gradient coatings. The structural-phase composition, mechanical and tribological properties of multilayer gradient metal–ceramic coatings in which the content of the ceramic phase changes smoothly along the depth were experimentally investigated. Three-, five- and six-layer gradient coatings were obtained by alternating metallic (NiCr) and ceramic (Al2O3) layers. The phase composition of all coatings was found to correspond to the removal of information from a depth of 20–30 μm. It was determined that the five-layer gradient coating, consisting of the lower metal layer (NiCr), the upper ceramic layer (Al2O3) and the transition layer of the mechanical mixture of metal and ceramics, is characterized by significantly higher hardness (15.9 GPa), wear resistance and adhesion strength.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7443
Author(s):  
Cezary Senderowski ◽  
Andrzej J. Panas ◽  
Bartosz Fikus ◽  
Dariusz Zasada ◽  
Mateusz Kopec ◽  
...  

In this paper, dynamic interactions between the FeAl particles and the gaseous detonation stream during supersonic D-gun spraying (DGS) conditions into the water are discussed in detail. Analytical and numerical models for the prediction of momentum and complex heat exchange, that includes radiative effects of heat transfer between the FeAl particle and the D-gun barrel wall and phase transformations due to melting and evaporation of the FeAl phase, are analyzed. Phase transformations identified during the DGS process impose the limit of FeAl grain size, which is required to maintain a solid state of aggregation during a collision with the substrate material. The identification of the characteristic time values for particle acceleration in the supersonic gas detonation flux, their convective heating and heat diffusion enable to assess the aggregation state of FeAl particles sprayed into water under certain DGS conditions.


2021 ◽  
pp. 131560
Author(s):  
Ahmad Ostovari Moghaddam ◽  
Marina Samodurova ◽  
Dmitry Mikhailov ◽  
Evgeny Trofimov

2021 ◽  
Author(s):  
Tomasz Chrostek

Comparative tests of gas detonation (GDS) coatings were carried out in order to investigate the influence of spraying parameters on abrasive wear under dry friction conditions. The tests were carried out using the pin-on-disc (PoD) method at room temperature. The microstructure of the coatings was analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM / EDS) methods. The results showed that with specific GDS process parameters, the main phases in both coatings were FeAl and Fe3Al involving thin oxide films Al2O3. The tribological tests proved that the coatings sprayed with the shorter barrel of the GDS gun showed higher wear resistance. The coefficient of friction was slightly lower in the case of coatings sprayed with the longer barrel of the GDS gun. During dry friction, oxide layers form on the surface, which act as a solid lubricant. The load applied to the samples during the tests causes shear stresses, thus increasing the wear of the coatings. During friction, the surface of the coatings is subjected to alternating tensile and compressive stresses, which lead to delamination and is the main wear mechanism of the coatings.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1433
Author(s):  
Bauyrzhan Rakhadilov ◽  
Daryn Baizhan

In this work, bioceramic coatings were formed on Ti6Al4V titanium alloy using a combined technique of plasma electrolytic oxidation followed by gas detonation spraying of calcium phosphate ceramics, based on hydroxyapatite. Plasma electrolytic oxidation was carried out in electrolytes with various chemical compositions, and the effect of electrolytes on the macro and microstructure, pore size and phase composition of coatings was estimated. Three types of electrolytes based on sodium compounds were used: phosphate, hydroxide, and silicate. Plasma electrolytic oxidation of the Ti–6Al–4V titanium alloy was carried out at a fixed DC voltage (270 V) for 5 min. The sample morphology and phase composition were studied with a scanning electron microscope and an X-ray diffractometer. According to the results, the most homogeneous structure with lower porousness and many crystalline anatase phases was obtained in the coating prepared in the silicate-based electrolyte. A hydroxyapatite layer was obtained on the surface of the oxide layer using detonation spraying. It was determined that the appearance of α-tricalcium phosphate phases is characteristic for detonation spraying of hydroxyapatite, but the hydroxyapatite phase is retained in the coating composition. Raman spectroscopy results indicate that hydroxyapatite is the main phase in the coatings.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012045
Author(s):  
A S Skriabin ◽  
A V Shakurov ◽  
V R Vesnin ◽  
P A Tsygankov

Abstract Carbon-carbon composites with calcium phosphate (Ca-P) coatings (with a thickness up to of ≈100 μm) are considering as prospective grafts for defect bone substitution. Detonation spraying of Ca-P layers allows to fulfil a deposition mode with relative low temperature loads (up to a temperature of the processed surface of ≈850…1100 K) under a pulsed pressure of ≈2…6 bar. Such deposition conditions could promote to minimal thermal decomposition of feedstock HAp.


Sign in / Sign up

Export Citation Format

Share Document