Research on interface characteristics of 308L stainless steel coatings manufactured by laser hot wire cladding

Author(s):  
Wenquan Li ◽  
Xingang Liu ◽  
Motomichi Yamamoto ◽  
Ying Guo ◽  
Song Zhu ◽  
...  
Author(s):  
B. Arsenault ◽  
P. Gu ◽  
J.G. Legoux ◽  
B. Harvey ◽  
J. Fournier

Abstract Steel reinforcement corrosion is one of the most serious causes of the premature deterioration of North American bridges and parking garages. Carbon steel rebars are very vulnerable to corrosion in salt contaminated concrete from deicing or coastal environment since the chloride ions induce severe corrosion as they reach the reinforcing steel rebars and depassivate the carbon steel. This paper evaluates the potential of using stainless steel coatings as a means to protect steel rebars from corrosion, especially in a salt contaminated concrete environment. The 316 L stainless steel coated coupons and rebars were prepared using Arc-sprayed and HP/HVOF processes. The corrosion performance of coatings were evaluated using linear polarization, a.c. impedance and salt spray techniques. Metallographic examination was also performed to characterize the coating microstructure.


2019 ◽  
Vol 269 ◽  
pp. 01006
Author(s):  
Pattanawit Suntiniwat ◽  
Eakkachai Warinsiriruk ◽  
Sutep Joy-A-Ka

The aim of this study is to improve cladding process productivity by high production rate with low dilution process by specifying technique as hot-wire GMAW process. The base metal of carbon steel A516 Gr70 was cladded by austenitic stainless steel 309LSi for creating a buttering layer and stainless steel 308LSi for hot-wire filler for topping a cladding layer in a one-pass run. The studied parameters this experiment consist of the feeding ratio of hot wire feeding speed per GMAW wire feeding speed and travel speed. Welding phenomenon during welding was observed by CCD camera with specifying the optical device to see the appropriate condition. The result showed the hot-wire GMAW cladding process could reduce cycle time 3.5 times compare with conventional FCAW cladding process. Moreover, dilution of this process could decrease lower than 15% with acceptable FN 3 on the top of weld surface. Therefore, single pass cladding process achieved by using this method with low dilution by still keep microstructure capability.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Xuming Liu ◽  
Guanghong Feng ◽  
Xin Liu ◽  
Baoshan Wang ◽  
Hongliang Zhang ◽  
...  

This paper aims at manufacturing stainless steel clad (SSC) rebars by metal deposition and a hot rolling method as well as characterizing its interface features and mechanical properties. The interface of the SSC rebar is relatively flat and clean, exhibiting a metallurgical bonding state at the microscale. Decarburization occurred at the interface in the carbon steel side of the SSC rebar. The diffusion of C, Cr, as well as Mn was measured across the interface of the SSC rebar, and the diffusion distance of Cr and Mn was found at 32 µm and 25 µm, respectively. The Vickers hardness testing in the transition zone of the SSC rebar near the carbon side showed 545 HV0.2 due to the martensite phase formed by the diffusion of key elements C, Cr, and Mn. The microstructure in the transition zone near the stainless steel reveals the duplex structure of martensite and ferrite. The carbide precipitations were observed near the interface, both in the transition zone and in the base metal of the stainless steel zone. The yield strength, tensile strength, and elongation of the SSC rebar were found as 423 MPa, 602 MPa, and 22%. No macroscopic crack was observed after the positive or negative bending tests.


Sign in / Sign up

Export Citation Format

Share Document