Activation of adenosine A2A receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice

Surgery ◽  
2011 ◽  
Vol 149 (2) ◽  
pp. 253-261 ◽  
Author(s):  
Domenica Altavilla ◽  
Francesco Squadrito ◽  
Francesca Polito ◽  
Natasha Irrera ◽  
Margherita Calò ◽  
...  
2013 ◽  
Vol 125 (12) ◽  
pp. 575-585 ◽  
Author(s):  
Alessandra Bitto ◽  
Natasha Irrera ◽  
Letteria Minutoli ◽  
Margherita Calò ◽  
Patrizia Lo Cascio ◽  
...  

Diabetic mice are characterized by a disrupted expression pattern of VEGF (vascular endothelial growth factor), and impaired vasculogenesis during healing. Experimental evidence suggests that RLX (relaxin) can improve several parameters associated with wound healing. Therefore we investigated the effects of porcine-derived RLX in diabetes-related wound-healing defects in genetically diabetic mice. An incisional wound model was produced on the back of female diabetic C57BL/KsJ-m+/+Leptdb (db+/db+) mice and their normal littermates (db+/+m). Animals were treated daily with porcine RLX (25 μg/mouse per day, subcutaneously) or its vehicle. Mice were killed on 3, 6 and 12 days after skin injury for measurements of VEGF mRNA and protein synthesis, SDF-1α (stromal cell-derived factor-1α) mRNA and eNOS (endothelial NO synthase) expression. Furthermore, we evaluated wound-breaking strength, histological changes, angiogenesis and vasculogenesis at day 12. Diabetic animals showed a reduced expression of VEGF, eNOS and SDF-1α compared with non-diabetic animals. At day 6, RLX administration resulted in an increase in VEGF mRNA expression and protein wound content, in eNOS expression and in SDF-1α mRNA. Furthermore, the histological evaluation indicated that RLX improved the impaired wound healing, enhanced the staining of MMP-11 (matrix metalloproteinase-11) and increased wound-breaking strength at day 12 in diabetic mice. Immunohistochemistry showed that RLX in diabetic animals augmented new vessel formation by stimulating both angiogenesis and vasculogenesis. RLX significantly reduced the time to complete skin normalization and this effect was abrogated by a concomitant treatment with antibodies against VEGF and CXCR4 (CXC chemokine receptor 4), the SDF-1α receptor. These data strongly suggest that RLX may have a potential application in diabetes-related wound disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guodong Li ◽  
Chung-Nga Ko ◽  
Dan Li ◽  
Chao Yang ◽  
Wanhe Wang ◽  
...  

AbstractImpaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL–HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2004 ◽  
Vol 20 (8) ◽  
pp. 2203-2213 ◽  
Author(s):  
Guadalupe Soria ◽  
Anna Castane ◽  
Fernando Berrendero ◽  
Catherine Ledent ◽  
Marc Parmentier ◽  
...  

2004 ◽  
Vol 30 (5) ◽  
pp. 891-900 ◽  
Author(s):  
Elena Bastia ◽  
Yue-Hang Xu ◽  
Angela C Scibelli ◽  
Yuan-Ji Day ◽  
Joel Linden ◽  
...  

1998 ◽  
Vol 9 (Supplement) ◽  
pp. S93
Author(s):  
J. Wardasa ◽  
A. Pinna ◽  
A. Cozzolino ◽  
M. Morellib

Sign in / Sign up

Export Citation Format

Share Document