Layered double hydroxide as multifunctional materials for environmental remediation: Fromchemical pollutants to microorganisms

Author(s):  
Rohit Sharma ◽  
Gregorio Guadalupe Carbajal Arizaga ◽  
Adesh K. Saini ◽  
Pooja Shandilya
2019 ◽  
Vol 107 (4) ◽  
pp. 299-309
Author(s):  
Shuqi Yu ◽  
Xiangxue Wang ◽  
Shunyan Ning ◽  
Zhongshan Chen ◽  
Xiangke Wang

Abstract The three-dimensional (3D) carbonaceous nanofiber and Ni-Al layered double hydroxide (CNF/LDH) nanocomposite was successfully prepared by a facile one-step hydrothermal methodology. Characterization of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), XRD, and Fourier transformed infrared spectroscopy (FTIR) provided a demonstration that the modified CNF/LDH nanocomposite possessed abundant functional groups, for instance, metal-oxygen surface bonding sites (Ni–O as well as Al–O) and free-metal surface bonding sites (C–O, C–O–C, as well as O–C=O). The elimination of representative radionuclide (i.e. U(VI)) on the CNF/LDH nanocomposite from aqueous solutions was explored as a key function of pH, ionic strength, contact time, reaction temperature as well as radionuclide preliminary concentrations with the use of the batch methodology. As revealed by the findings, the sorption of radionuclides on CNF/LDH nanocomposite adhered to the pseudo-second-order kinetic model as well as Langmuir model. The maximum elimination capacity of U(VI) amounted to be 0.7 mmol/g. The independent of ionic strength shed light on the fact that inner-sphere surface complexation mainly overpowered radionuclide uptake by the CNF/LDH nanocomposite, which was further verified through the combination of FTIR and XPS spectral analyses. The abovementioned analyses shed light on the fact that the CNF/LDH nanocomposite can be regarded as a latent material to preconcentration radionuclides for environmental remediation.


2015 ◽  
Vol 51 (15) ◽  
pp. 3024-3036 ◽  
Author(s):  
Zi Gu ◽  
John James Atherton ◽  
Zhi Ping Xu

Layered double hydroxide (LDH)-based nanocomposites, constructed by interacting LDH nanoparticles with other nanomaterials (e.g. silica nanoparticles and magnetic nanoparticles) or polymeric molecules (e.g. proteins), are an emerging yet active area in healthcare, environmental remediation, energy conversion and storage.


2015 ◽  
Vol 1 (2) ◽  
pp. 36-41
Author(s):  
Laura Cocheci ◽  
◽  
Ancuta-Corina Marcu ◽  
Paul Barvinschi ◽  
Aniela Pop

2013 ◽  
Vol 28 (9) ◽  
pp. 1025-1032 ◽  
Author(s):  
Yi-Xuan ZHANG ◽  
Song-Mei LI ◽  
Jian-Hua LIU ◽  
Mei YU

Sign in / Sign up

Export Citation Format

Share Document