Formal analysis of the continuous dynamics of cyber–physical systems using theorem proving

2020 ◽  
pp. 101850
Author(s):  
Adnan Rashid ◽  
Osman Hasan
Author(s):  
Jaehun Lee ◽  
Sharon Kim ◽  
Kyungmin Bae ◽  
Peter Csaba Ölveczky

AbstractWe present the $$\textsc {Hybrid}\textsc {Synch}\textsc {AADL}$$ H Y B R I D S Y N C H AADL modeling language and formal analysis tool for virtually synchronous cyber-physical systems with complex control programs, continuous behaviors, bounded clock skews, network delays, and execution times. We leverage the Hybrid PALS equivalence, so that it is sufficient to model and verify the simpler underlying synchronous designs. We define the $$\textsc {Hybrid}\textsc {Synch}\textsc {AADL}$$ H Y B R I D S Y N C H AADL language as a sublanguage of the avionics modeling standard AADL for modeling such designs in AADL, and demonstrate the effectiveness of $$\textsc {Hybrid}\textsc {Synch}\textsc {AADL}$$ H Y B R I D S Y N C H AADL on a number of applications.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 33741-33758 ◽  
Author(s):  
Sebti Mouelhi ◽  
Mohamed-Emine Laarouchi ◽  
Daniela Cancila ◽  
Hakima Chaouchi

Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Sign in / Sign up

Export Citation Format

Share Document